使用变压器的深度学习最近在许多重要领域取得了很大的成功,例如自然语言处理,计算机视觉,异常检测和推荐系统等。在变压器的几种优点中,对于时间序列预测,捕获远程时间依赖性和相互作用的能力是可取的,从而导致其在各种时间序列应用中的进步。在本文中,我们为非平稳时间序列构建了变压器模型。这个问题具有挑战性,但至关重要。我们为基于小波的变压器编码器体系结构提供了一个新颖的单变量时间序列表示学习框架,并将其称为W-Transformer。所提出的W-Transformer使用最大重叠离散小波转换(MODWT)到时间序列数据,并在分解数据集上构建本地变压器,以生动地捕获时间序列中的非机构性和远程非线性依赖性。在来自各个领域的几个公共基准时间序列数据集和具有不同特征的几个公开基准时间序列数据集上评估我们的框架,我们证明它的平均表现明显优于短期和长期预测的基线预报器,即使是由包含的数据集组成的数据集只有几百个培训样本。
translated by 谷歌翻译
传染病仍然是全世界人类疾病和死亡的主要因素之一,其中许多疾病引起了流行的感染波。特定药物和预防疫苗防止大多数流行病的不可用,这使情况变得更糟。这些迫使公共卫生官员,卫生保健提供者和政策制定者依靠由流行病的可靠预测产生的预警系统。对流行病的准确预测可以帮助利益相关者调整对手的对策,例如疫苗接种运动,人员安排和资源分配,以减少手头的情况,这可以转化为减少疾病影响的影响。不幸的是,大多数过去的流行病(例如,登革热,疟疾,肝炎,流感和最新的Covid-19)表现出非线性和非平稳性特征,这是由于它们基于季节性依赖性变化以及这些流行病的性质的扩散波动而引起的。 。我们使用基于最大的重叠离散小波变换(MODWT)自动回归神经网络分析了各种流行时期时间序列数据集,并将其称为EWNET。 MODWT技术有效地表征了流行时间序列中的非平稳行为和季节性依赖性,并在拟议的集合小波网络框架中改善了自回旋神经网络的预测方案。从非线性时间序列的角度来看,我们探讨了所提出的EWNET模型的渐近平稳性,以显示相关的马尔可夫链的渐近行为。我们还理论上还研究了学习稳定性的效果以及在拟议的EWNET模型中选择隐藏的神经元的选择。从实际的角度来看,我们将我们提出的EWNET框架与以前用于流行病预测的几种统计,机器学习和深度学习模型进行了比较。
translated by 谷歌翻译
Dengue fever is a virulent disease spreading over 100 tropical and subtropical countries in Africa, the Americas, and Asia. This arboviral disease affects around 400 million people globally, severely distressing the healthcare systems. The unavailability of a specific drug and ready-to-use vaccine makes the situation worse. Hence, policymakers must rely on early warning systems to control intervention-related decisions. Forecasts routinely provide critical information for dangerous epidemic events. However, the available forecasting models (e.g., weather-driven mechanistic, statistical time series, and machine learning models) lack a clear understanding of different components to improve prediction accuracy and often provide unstable and unreliable forecasts. This study proposes an ensemble wavelet neural network with exogenous factor(s) (XEWNet) model that can produce reliable estimates for dengue outbreak prediction for three geographical regions, namely San Juan, Iquitos, and Ahmedabad. The proposed XEWNet model is flexible and can easily incorporate exogenous climate variable(s) confirmed by statistical causality tests in its scalable framework. The proposed model is an integrated approach that uses wavelet transformation into an ensemble neural network framework that helps in generating more reliable long-term forecasts. The proposed XEWNet allows complex non-linear relationships between the dengue incidence cases and rainfall; however, mathematically interpretable, fast in execution, and easily comprehensible. The proposal's competitiveness is measured using computational experiments based on various statistical metrics and several statistical comparison tests. In comparison with statistical, machine learning, and deep learning methods, our proposed XEWNet performs better in 75% of the cases for short-term and long-term forecasting of dengue incidence.
translated by 谷歌翻译
可持续性需要提高能源效率,而最小的废物则需要提高能源效率。因此,未来的电力系统应提供高水平的灵活性IIN控制能源消耗。对于能源行业的决策者和专业人员而言,对未来能源需求/负载的精确预测非常重要。预测能源负载对能源提供者和客户变得更有优势,使他们能够建立有效的生产策略以满足需求。这项研究介绍了两个混合级联模型,以预测不同分辨率中的多步户家庭功耗。第一个模型将固定小波变换(SWT)集成为有效的信号预处理技术,卷积神经网络和长期短期记忆(LSTM)。第二种混合模型将SWT与名为Transformer的基于自我注意的神经网络结构相结合。使用时频分析方法(例如多步预测问题中的SWT)的主要限制是,它们需要顺序信号,在多步骤预测应用程序中有问题的信号重建问题。级联模型可以通过使用回收输出有效地解决此问题。实验结果表明,与现有的多步电消耗预测方法相比,提出的混合模型实现了出色的预测性能。结果将为更准确和可靠的家庭用电量预测铺平道路。
translated by 谷歌翻译
尽管基于变压器的方法已显着改善了长期序列预测的最新结果,但它们不仅在计算上昂贵,而且更重要的是,无法捕获全球时间序列的观点(例如,整体趋势)。为了解决这些问题,我们建议将变压器与季节性趋势分解方法相结合,在这种方法中,分解方法捕获了时间序列的全局概况,而变形金刚捕获了更详细的结构。为了进一步提高变压器的长期预测性能,我们利用了以下事实:大多数时间序列倾向于在诸如傅立叶变换之类的知名基础上具有稀疏的表示形式,并开发出频率增强的变压器。除了更有效外,所提出的方法被称为频率增强分解变压器({\ bf fedFormer}),比标准变压器更有效,具有线性复杂性对序列长度。我们对六个基准数据集的实证研究表明,与最先进的方法相比,FedFormer可以将预测错误降低14.8 \%$ $和$ 22.6 \%\%\%\%$ $,分别为多变量和单变量时间序列。代码可在https://github.com/maziqing/fedformer上公开获取。
translated by 谷歌翻译
最近,对于长期时间序列预测(LTSF)任务,基于变压器的解决方案激增。尽管过去几年的表现正在增长,但我们质疑这项研究中这一研究的有效性。具体而言,可以说,变形金刚是最成功的解决方案,是在长序列中提取元素之间的语义相关性。但是,在时间序列建模中,我们要在一组连续点的有序集中提取时间关系。在采用位置编码和使用令牌将子系列嵌入变压器中的同时,有助于保留某些订购信息,但\ emph {置换不变}的自我注意力专注机制的性质不可避免地会导致时间信息损失。为了验证我们的主张,我们介绍了一组名为LTSF线性的令人尴尬的简单单层线性模型,以进行比较。在九个现实生活数据集上的实验结果表明,LTSF线性在所有情况下都超过现有的基于变压器的LTSF模型,并且通常要大幅度较大。此外,我们进行了全面的经验研究,以探索LTSF模型各种设计元素对其时间关系提取能力的影响。我们希望这一令人惊讶的发现为LTSF任务打开了新的研究方向。我们还主张重新审视基于变压器解决方案对其他时间序列分析任务(例如,异常检测)的有效性。代码可在:\ url {https://github.com/cure-lab/ltsf-linear}中获得。
translated by 谷歌翻译
多元时间序列预测已在各种领域(包括金融,交通,能源和医疗保健)中广泛范围的应用程序。为了捕获复杂的时间模式,大量研究设计了基于RNN,GNN和Transformers的许多变体的复杂神经网络体系结构。但是,复杂的模型在计算上通常是昂贵的,因此当应用于大型现实世界数据集时,在训练和推理效率方面面临严重的挑战。在本文中,我们介绍了Lightts,这是一种基于简单的基于MLP的结构的轻度深度学习体系结构。 LightT的关键思想是在两种微妙的下采样策略之上应用基于MLP的结构,包括间隔抽样和连续采样,灵感来自至关重要的事实,即下采样时间序列通常保留其大多数信息。我们对八个广泛使用的基准数据集进行了广泛的实验。与现有的最新方法相比,Lightts在其中五个方面表现出更好的性能,其余的性能可比性。此外,Lightts高效。与最大的基准数据集上的先前SOTA方法相比,它使用的触发器少于5%。此外,Lightts的预测准确性与以前的SOTA方法相比,在长序列预测任务中,预测准确性的差异要小得多。
translated by 谷歌翻译
预测时间序列数据代表了数据科学和知识发现研究的新兴领域,其广泛应用程序从股票价格和能源需求预测到早期预测流行病。在过去的五十年中,已经提出了许多统计和机器学习方法,对高质量和可靠预测的需求。但是,在现实生活中的预测问题中,存在基于上述范式之一的模型是可取的。因此,需要混合解决方案来弥合经典预测方法与现代神经网络模型之间的差距。在这种情况下,我们介绍了一个概率自回归神经网络(PARNN)模型,该模型可以处理各种复杂的时间序列数据(例如,非线性,非季节性,远程依赖性和非平稳性)。拟议的PARNN模型是通过建立综合运动平均值和自回归神经网络的融合来构建的,以保持个人的解释性,可伸缩性和``白色盒子样''的预测行为。通过考虑相关的马尔可夫链的渐近行为,获得了渐近平稳性和几何形状的足够条件。与先进的深度学习工具不同,基于预测间隔的PARNN模型的不确定性量化。在计算实验期间,Parnn在各种各样的现实世界数据集中,超过了标准统计,机器学习和深度学习模型(例如,变形金刚,Nbeats,Deepar等),来自宏观经济学,旅游,能源,流行病学和其他人的真实数据集集合 - 期,中期和长期预测。与最先进的预报相比,与最佳方法相比,与最佳方法进行了多重比较,以展示该提案的优越性。
translated by 谷歌翻译
随着高级数字技术的蓬勃发展,用户以及能源分销商有可能获得有关家庭用电的详细信息。这些技术也可以用来预测家庭用电量(又称负载)。在本文中,我们研究了变分模式分解和深度学习技术的使用,以提高负载预测问题的准确性。尽管在文献中已经研究了这个问题,但选择适当的分解水平和提供更好预测性能的深度学习技术的关注较少。这项研究通过研究六个分解水平和五个不同的深度学习网络的影响来弥合这一差距。首先,使用变分模式分解将原始负载轮廓分解为固有模式函数,以减轻其非平稳方面。然后,白天,小时和过去的电力消耗数据作为三维输入序列馈送到四级小波分解网络模型。最后,将与不同固有模式函数相关的预测序列组合在一起以形成聚合预测序列。使用摩洛哥建筑物的电力消耗数据集(MORED)的五个摩洛哥家庭的负载曲线评估了该方法,并根据最新的时间序列模型和基线持久性模型进行了基准测试。
translated by 谷歌翻译
最近的研究表明,诸如RNN和Transformers之类的深度学习模型为长期预测时间序列带来了显着的性能增长,因为它们有效地利用了历史信息。但是,我们发现,如何在神经网络中保存历史信息,同时避免过度适应历史上的噪音,这仍然有很大的改进空间。解决此问题可以更好地利用深度学习模型的功能。为此,我们设计了一个\ textbf {f}要求\ textbf {i} mpraved \ textbf {l} egendre \ textbf {m} emory模型,或{\ bf film}:它应用了legendre promotions topimate legendre provientions近似历史信息,近似历史信息,使用傅立叶投影来消除噪声,并添加低级近似值以加快计算。我们的实证研究表明,所提出的膜显着提高了由(\ textbf {20.3 \%},\ textbf {22.6 \%})的多变量和单变量长期预测中最新模型的准确性。我们还证明,这项工作中开发的表示模块可以用作一般插件,以提高其他深度学习模块的长期预测性能。代码可从https://github.com/tianzhou2011/film/获得。
translated by 谷歌翻译
为了提高风能生产的安全性和可靠性,短期预测已成为最重要的。这项研究的重点是挪威大陆架的多步时时空风速预测。图形神经网络(GNN)体系结构用于提取空间依赖性,具有不同的更新功能以学习时间相关性。这些更新功能是使用不同的神经网络体系结构实现的。近年来,一种这样的架构,即变压器,在序列建模中变得越来越流行。已经提出了对原始体系结构的各种改动,以更好地促进时间序列预测,本研究的重点是告密者Logsparse Transformer和AutoFormer。这是第一次将logsparse变压器和自动形态应用于风预测,并且第一次以任何一种或告密者的形式在时空设置以进行风向预测。通过比较时空长的短期记忆(LSTM)和多层感知器(MLP)模型,该研究表明,使用改变的变压器体系结构作为GNN中更新功能的模型能够超越这些功能。此外,我们提出了快速的傅立叶变压器(FFTRANSFORMER),该变压器是基于信号分解的新型变压器体系结构,由两个单独的流组成,分别分析趋势和周期性成分。发现FFTRANSFORMER和自动成型器可在10分钟和1小时的预测中取得优异的结果,而FFTRANSFORMER显着优于所有其他模型的4小时预测。最后,通过改变图表表示的连通性程度,该研究明确说明了所有模型如何利用空间依赖性来改善局部短期风速预测。
translated by 谷歌翻译
在各种下游机器学习任务中,多元时间序列的可靠和有效表示至关重要。在多元时间序列预测中,每个变量都取决于其历史值,并且变量之间也存在相互依存关系。必须设计模型以捕获时间序列之间的内部和相互关系。为了朝着这一目标迈进,我们提出了时间序列注意变压器(TSAT),以进行多元时间序列表示学习。使用TSAT,我们以边缘增强动态图来表示多元时间序列的时间信息和相互依赖性。在动态图中的节点表示,串行中的相关性表示。修改了一种自我注意力的机制,以使用超经验模式分解(SMD)模块捕获序列间的相关性。我们将嵌入式动态图应用于时代序列预测问题,包括两个现实世界数据集和两个基准数据集。广泛的实验表明,TSAT显然在各种预测范围内使用六种最先进的基线方法。我们进一步可视化嵌入式动态图,以说明TSAT的图形表示功能。我们在https://github.com/radiantresearch/tsat上共享代码。
translated by 谷歌翻译
Multivariate time series forecasting (MTSF) is a fundamental problem in numerous real-world applications. Recently, Transformer has become the de facto solution for MTSF, especially for the long-term cases. However, except for the one forward operation, the basic configurations in existing MTSF Transformer architectures were barely carefully verified. In this study, we point out that the current tokenization strategy in MTSF Transformer architectures ignores the token uniformity inductive bias of Transformers. Therefore, the vanilla MTSF transformer struggles to capture details in time series and presents inferior performance. Based on this observation, we make a series of evolution on the basic architecture of the vanilla MTSF transformer. We vary the flawed tokenization strategy, along with the decoder structure and embeddings. Surprisingly, the evolved simple transformer architecture is highly effective, which successfully avoids the over-smoothing phenomena in the vanilla MTSF transformer, achieves a more detailed and accurate prediction, and even substantially outperforms the state-of-the-art Transformers that are well-designed for MTSF.
translated by 谷歌翻译
Transformer-based models have gained large popularity and demonstrated promising results in long-term time-series forecasting in recent years. In addition to learning attention in time domain, recent works also explore learning attention in frequency domains (e.g., Fourier domain, wavelet domain), given that seasonal patterns can be better captured in these domains. In this work, we seek to understand the relationships between attention models in different time and frequency domains. Theoretically, we show that attention models in different domains are equivalent under linear conditions (i.e., linear kernel to attention scores). Empirically, we analyze how attention models of different domains show different behaviors through various synthetic experiments with seasonality, trend and noise, with emphasis on the role of softmax operation therein. Both these theoretical and empirical analyses motivate us to propose a new method: TDformer (Trend Decomposition Transformer), that first applies seasonal-trend decomposition, and then additively combines an MLP which predicts the trend component with Fourier attention which predicts the seasonal component to obtain the final prediction. Extensive experiments on benchmark time-series forecasting datasets demonstrate that TDformer achieves state-of-the-art performance against existing attention-based models.
translated by 谷歌翻译
在线广告收入占发布者的收入流越来越多的份额,特别是对于依赖谷歌和Facebook等技术公司广告网络的中小型出版商而言。因此,出版商可能会从准确的在线广告收入预测中获益,以更好地管理其网站货币化战略。但是,只能获得自己的收入数据的出版商缺乏出版商广告总市场的整体视图,这反过来限制了他们在他们未来的在线广告收入中产生见解的能力。为了解决这一业务问题,我们利用了一个专有的数据库,包括来自各种各样的地区的大量出版商的Google Adsense收入。我们采用时间融合变压器(TFT)模型,这是一种新的基于关注的架构,以预测出版商的广告收入。我们利用多个协变量,不仅包括出版商自己的特征,还包括其他出版商的广告收入。我们的预测结果优于多个时间范围的几个基准深度学习时间系列预测模型。此外,我们通过分析可变重要性重量来识别显着的特征和自我注意重量来解释结果,以揭示持久的时间模式。
translated by 谷歌翻译
虽然外源变量对时间序列分析的性能改善有重大影响,但在当前的连续方法中很少考虑这些序列间相关性和时间依赖性。多元时间序列的动力系统可以用复杂的未知偏微分方程(PDE)进行建模,这些方程(PDE)在科学和工程的许多学科中都起着重要作用。在本文中,我们提出了一个任意步骤预测的连续时间模型,以学习多元时间序列中的未知PDE系统,其管理方程是通过自我注意和封闭的复发神经网络参数化的。所提出的模型\下划线{变量及其对目标系列的影响。重要的是,使用特殊设计的正则化指南可以将模型简化为正则化的普通微分方程(ODE)问题,这使得可以触犯的PDE问题以获得数值解决方案,并且可行,以预测目标序列的多个未来值。广泛的实验表明,我们提出的模型可以在强大的基准中实现竞争精度:平均而言,它通过降低RMSE的$ 9.85 \%$和MAE的MAE $ 13.98 \%$的基线表现优于最佳基准,以获得任意步骤预测的MAE $。
translated by 谷歌翻译
近年来,已对变压器进行了积极研究,以预测。尽管在各种情况下经常显示出令人鼓舞的结果,但传统的变压器并非旨在充分利用时间序列数据的特征,因此遭受了一些根本的限制,例如,它们通常缺乏分解能力和解释性,并且既不有效,也没有有效的效率 - 期望。在本文中,我们提出了一种新颖的时间序列变压器体系结构Etsformer,它利用了指数平滑的原理,以改善变压器的时间序列预测。特别是,受到预测时间序列的经典指数平滑方法的启发,我们提出了新型的指数平滑注意力(ESA)和频率注意(FA),以替代香草变压器中的自我发挥机制,从而提高了准确性和效率。基于这些,我们使用模块化分解块重新设计了变压器体系结构,以便可以学会将时间序列数据分解为可解释的时间序列组件,例如水平,增长和季节性。对各种时间序列基准的广泛实验验证了该方法的功效和优势。代码可从https://github.com/salesforce/etsformer获得。
translated by 谷歌翻译
自回旋运动平均值(ARMA)模型是经典的,可以说是模型时间序列数据的最多研究的方法之一。它具有引人入胜的理论特性,并在从业者中广泛使用。最近的深度学习方法普及了经常性神经网络(RNN),尤其是长期记忆(LSTM)细胞,这些细胞已成为神经时间序列建模中最佳性能和最常见的构件之一。虽然对具有长期效果的时间序列数据或序列有利,但复杂的RNN细胞并不总是必须的,有时甚至可能不如更简单的复发方法。在这项工作中,我们介绍了ARMA细胞,这是一种在神经网络中的时间序列建模的更简单,模块化和有效的方法。该单元可以用于存在复发结构的任何神经网络体系结构中,并自然地使用矢量自动进程处理多元时间序列。我们还引入了Convarma细胞作为空间相关时间序列的自然继任者。我们的实验表明,所提出的方法在性能方面与流行替代方案具有竞争力,同时由于其简单性而变得更加强大和引人注目。
translated by 谷歌翻译
延长预测时间是对真实应用的危急需求,例如极端天气预警和长期能源消耗规划。本文研究了时间序列的长期预测问题。基于现有的变压器的模型采用各种自我关注机制来发现远程依赖性。然而,长期未来的复杂时间模式禁止模型找到可靠的依赖项。此外,变压器必须采用长期级效率的稀疏版本的点明显自我关注,从而导致信息利用瓶颈。超越变形金刚,我们将自动运气设计为具有自动相关机制的新型分解架构。我们突破了序列分解的预处理公约,并将其翻新为深层模型的基本内部。这种设计为复杂的时间序列具有渐进式分解容量的自动成形。此外,由随机过程理论的启发,我们基于串联周期性设计自相关机制,这在子系列级别进行了依赖关系发现和表示聚合。自动相关性效率和准确性的自我关注。在长期预测中,自动成形器产生最先进的准确性,六个基准测试中的相对改善38%,涵盖了五种实际应用:能源,交通,经济,天气和疾病。此存储库中可用的代码:\ url {https://github.com/thuml/autoformer}。
translated by 谷歌翻译
In recent years, deep-learning-based approaches have been introduced to solving time-series forecasting-related problems. These novel methods have demonstrated impressive performance in univariate and low-dimensional multivariate time-series forecasting tasks. However, when these novel methods are used to handle high-dimensional multivariate forecasting problems, their performance is highly restricted by a practical training time and a reasonable GPU memory configuration. In this paper, inspired by a change of basis in the Hilbert space, we propose a flexible data feature extraction technique that excels in high-dimensional multivariate forecasting tasks. Our approach was originally developed for the National Science Foundation (NSF) Algorithms for Threat Detection (ATD) 2022 Challenge. Implemented using the attention mechanism and Convolutional Neural Networks (CNN) architecture, our method demonstrates great performance and compatibility. Our models trained on the GDELT Dataset finished 1st and 2nd places in the ATD sprint series and hold promise for other datasets for time series forecasting.
translated by 谷歌翻译