特征提取方法有助于降低维度并捕获相关信息。在时间序列预测(TSF)中,功能可以用作辅助信息,以实现更好的准确性。传统上,TSF中使用的功能是手工制作的,需要域知识和重要的数据工程工作。在这项研究中,我们首先介绍了静态和动态功能的概念,然后使我们能够开发自主功能,以检索不需要域知识的静态特征(FRAN)的自动回归网络(FRAN)。该方法基于CNN分类器,该分类器经过训练,可以为每个系列创建一个集体和独特的类表示,要么是从该系列的部分中或(如果可以使用的类标签),从一组同一类中。它允许以相似的行为区分序列,但要从不同的类别中进行区分,并使从分类器提取的特征具有最大歧视性。我们探讨了我们功能的解释性,并评估预测元学习环境中该方法的预测能力。我们的结果表明,在大多数情况下,我们的功能会提高准确性。一旦训练,我们的方法就会创建比统计方法快的阶数级级。
translated by 谷歌翻译
本文介绍了一个集成预测方法,通过减少特征和模型选择假设来显示M4Competitiation数据集的强劲结果,称为甜甜圈(不利用人为假设)。我们的假设减少,主要由自动生成的功能和更多样化的集合模型组成,显着优于Montero-Manso等人的统计特征的集合方法FForma。 (2020)。此外,我们用长短期内存网络(LSTM)AutoEncoder调查特征提取,并发现此类特征包含传统统计特征方法未捕获的重要信息。合奏加权模型使用LSTM功能和统计功能准确地结合模型。特征重要性和交互的分析表明,单独的统计数据的LSTM特征略有优势。聚类分析表明,不同的基本LSTM功能与大多数统计特征不同。我们还发现,通过使用新模型增强合奏来增加加权模型的解决方案空间是加权模型学习使用的东西,解释了准确性的一部分。最后,我们为集合的最佳组合和选择提供了正式的前后事实分析,通过M4数据集的线性优化量化差异。我们还包括一个简短的证据,模型组合优于模型选择,后者。
translated by 谷歌翻译
基于预测方法的深度学习已成为时间序列预测或预测的许多应用中的首选方法,通常通常优于其他方法。因此,在过去的几年中,这些方法现在在大规模的工业预测应用中无处不在,并且一直在预测竞赛(例如M4和M5)中排名最佳。这种实践上的成功进一步提高了学术兴趣,以理解和改善深厚的预测方法。在本文中,我们提供了该领域的介绍和概述:我们为深入预测的重要构建块提出了一定深度的深入预测;随后,我们使用这些构建块,调查了最近的深度预测文献的广度。
translated by 谷歌翻译
杂交和集合学习技术是改善预测方法的预测能力的流行模型融合技术。通过有限的研究,将这两种有前途的方法结合在一起,本文着重于不同合奏的基础模型池中指数平滑的旋转神经网络(ES-RNN)的实用性。我们将某些最先进的结合技术和算术模型平均作为基准进行比较。我们对M4预测数据集进行了100,000个时间序列,结果表明,基于特征的预测模型平均(FFORFORA)平均是与ES-RNN的晚期数据融合的最佳技术。但是,考虑到M4的每日数据子集,堆叠是处理所有基本模型性能相似的情况下唯一成功的合奏。我们的实验结果表明,与N-Beats作为基准相比,我们达到了艺术的预测结果。我们得出的结论是,模型平均比模型选择和堆叠策略更强大。此外,结果表明,提高梯度对于实施合奏学习策略是优越的。
translated by 谷歌翻译
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.
translated by 谷歌翻译
Wind power forecasting helps with the planning for the power systems by contributing to having a higher level of certainty in decision-making. Due to the randomness inherent to meteorological events (e.g., wind speeds), making highly accurate long-term predictions for wind power can be extremely difficult. One approach to remedy this challenge is to utilize weather information from multiple points across a geographical grid to obtain a holistic view of the wind patterns, along with temporal information from the previous power outputs of the wind farms. Our proposed CNN-RNN architecture combines convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to extract spatial and temporal information from multi-dimensional input data to make day-ahead predictions. In this regard, our method incorporates an ultra-wide learning view, combining data from multiple numerical weather prediction models, wind farms, and geographical locations. Additionally, we experiment with global forecasting approaches to understand the impact of training the same model over the datasets obtained from multiple different wind farms, and we employ a method where spatial information extracted from convolutional layers is passed to a tree ensemble (e.g., Light Gradient Boosting Machine (LGBM)) instead of fully connected layers. The results show that our proposed CNN-RNN architecture outperforms other models such as LGBM, Extra Tree regressor and linear regression when trained globally, but fails to replicate such performance when trained individually on each farm. We also observe that passing the spatial information from CNN to LGBM improves its performance, providing further evidence of CNN's spatial feature extraction capabilities.
translated by 谷歌翻译
评估能源转型和能源市场自由化对资源充足性的影响是一种越来越重要和苛刻的任务。能量系统的上升复杂性需要足够的能量系统建模方法,从而提高计算要求。此外,随着复杂性,同样调用概率评估和场景分析同样增加不确定性。为了充分和高效地解决这些各种要求,需要来自数据科学领域的新方法来加速当前方法。通过我们的系统文献综述,我们希望缩小三个学科之间的差距(1)电力供应安全性评估,(2)人工智能和(3)实验设计。为此,我们对所选应用领域进行大规模的定量审查,并制作彼此不同学科的合成。在其他发现之外,我们使用基于AI的方法和应用程序的AI方法和应用来确定电力供应模型的复杂安全性的元素,并作为未充分涵盖的应用领域的储存调度和(非)可用性。我们结束了推出了一种新的方法管道,以便在评估电力供应安全评估时充分有效地解决当前和即将到来的挑战。
translated by 谷歌翻译
近年来,随着传感器和智能设备的广泛传播,物联网(IoT)系统的数据生成速度已大大增加。在物联网系统中,必须经常处理,转换和分析大量数据,以实现各种物联网服务和功能。机器学习(ML)方法已显示出其物联网数据分析的能力。但是,将ML模型应用于物联网数据分析任务仍然面临许多困难和挑战,特别是有效的模型选择,设计/调整和更新,这给经验丰富的数据科学家带来了巨大的需求。此外,物联网数据的动态性质可能引入概念漂移问题,从而导致模型性能降解。为了减少人类的努力,自动化机器学习(AUTOML)已成为一个流行的领域,旨在自动选择,构建,调整和更新机器学习模型,以在指定任务上实现最佳性能。在本文中,我们对Automl区域中模型选择,调整和更新过程中的现有方法进行了审查,以识别和总结将ML算法应用于IoT数据分析的每个步骤的最佳解决方案。为了证明我们的发现并帮助工业用户和研究人员更好地实施汽车方法,在这项工作中提出了将汽车应用于IoT异常检测问题的案例研究。最后,我们讨论并分类了该领域的挑战和研究方向。
translated by 谷歌翻译
Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-ofthe-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.
translated by 谷歌翻译
预测基金绩效对投资者和基金经理都是有益的,但这是一项艰巨的任务。在本文中,我们测试了深度学习模型是否比传统统计技术更准确地预测基金绩效。基金绩效通常通过Sharpe比率进行评估,该比例代表了风险调整的绩效,以确保基金之间有意义的可比性。我们根据每月收益率数据序列数据计算了年度夏普比率,该数据的时间序列数据为600多个投资于美国上市大型股票的开放式共同基金投资。我们发现,经过现代贝叶斯优化训练的长期短期记忆(LSTM)和封闭式复发单元(GRUS)深度学习方法比传统统计量相比,预测基金的Sharpe比率更高。结合了LSTM和GRU的预测的合奏方法,可以实现所有模型的最佳性能。有证据表明,深度学习和结合能提供有希望的解决方案,以应对基金绩效预测的挑战。
translated by 谷歌翻译
A well-performing prediction model is vital for a recommendation system suggesting actions for energy-efficient consumer behavior. However, reliable and accurate predictions depend on informative features and a suitable model design to perform well and robustly across different households and appliances. Moreover, customers' unjustifiably high expectations of accurate predictions may discourage them from using the system in the long term. In this paper, we design a three-step forecasting framework to assess predictability, engineering features, and deep learning architectures to forecast 24 hourly load values. First, our predictability analysis provides a tool for expectation management to cushion customers' anticipations. Second, we design several new weather-, time- and appliance-related parameters for the modeling procedure and test their contribution to the model's prediction performance. Third, we examine six deep learning techniques and compare them to tree- and support vector regression benchmarks. We develop a robust and accurate model for the appliance-level load prediction based on four datasets from four different regions (US, UK, Austria, and Canada) with an equal set of appliances. The empirical results show that cyclical encoding of time features and weather indicators alongside a long-short term memory (LSTM) model offer the optimal performance.
translated by 谷歌翻译
信息爆炸的时代促使累积巨大的时间序列数据,包括静止和非静止时间序列数据。最先进的算法在处理静止时间数据方面取得了体面的性能。然而,解决静止​​时间系列的传统算法不适用于外汇交易的非静止系列。本文调查了适用的模型,可以提高预测未来非静止时间序列序列趋势的准确性。特别是,我们专注于识别潜在模型,并调查识别模式从历史数据的影响。我们提出了基于RNN的\ Rebuttal {The} SEQ2Seq模型的组合,以及通过动态时间翘曲和Zigzag峰谷指示器提取的注重机制和富集的集合特征。定制损失函数和评估指标旨在更加关注预测序列的峰值和谷点。我们的研究结果表明,我们的模型可以在外汇数据集中预测高精度的4小时未来趋势,这在逼真的情况下至关重要,以协助外汇交易决策。我们进一步提供了对各种损失函数,评估指标,模型变体和组件对模型性能的影响的评估。
translated by 谷歌翻译
预测住宅功率使用对于辅助智能电网来管理和保护能量以确保有效使用的必不可少。客户级别的准确能量预测将直接反映电网系统的效率,但由于许多影响因素,例如气象和占用模式,预测建筑能源使用是复杂的任务。在成瘾中,鉴于多传感器环境的出现以及能量消费者和智能电网之间的两种方式通信,在能量互联网(IOE)中,高维时间序列越来越多地出现。因此,能够计算高维时间序列的方法在智能建筑和IOE应用中具有很大的价值。模糊时间序列(FTS)模型作为数据驱动的非参数模型的易于实现和高精度。不幸的是,如果所有功能用于训练模型,现有的FTS模型可能是不可行的。我们通过将原始高维数据投入低维嵌入空间并在该低维表示中使用多变量FTS方法来提出一种用于处理高维时间序列的新方法。组合这些技术使得能够更好地表示多变量时间序列的复杂内容和更准确的预测。
translated by 谷歌翻译
随着深度学习生成模型的最新进展,它在时间序列领域的出色表现并没有花费很长时间。用于与时间序列合作的深度神经网络在很大程度上取决于培训中使用的数据集的广度和一致性。这些类型的特征通常在现实世界中不丰富,在现实世界中,它们通常受到限制,并且通常具有必须保证的隐私限制。因此,一种有效的方法是通过添加噪声或排列并生成新的合成数据来使用\ gls {da}技术增加数据数。它正在系统地审查该领域的当前最新技术,以概述所有可用的算法,并提出对最相关研究的分类法。将评估不同变体的效率;作为过程的重要组成部分,将分析评估性能的不同指标以及有关每个模型的主要问题。这项研究的最终目的是摘要摘要,这些领域的进化和性能会产生更好的结果,以指导该领域的未来研究人员。
translated by 谷歌翻译
粒子加速器是复杂的设施,可产生大量的结构化数据,并具有明确的优化目标以及精确定义的控制要求。因此,它们自然适合数据驱动的研究方法。来自传感器和监视加速器形式的多元时间序列的数据。在加速器控制和诊断方面,快速的先发制人方法是高度首选的,数据驱动的时间序列预测方法的应用尤其有希望。这篇综述提出了时间序列预测问题,并总结了现有模型,并在各个科学领域的应用中进行了应用。引入了粒子加速器领域中的几次和将来的尝试。预测到粒子加速器的时间序列的应用显示出令人鼓舞的结果和更广泛使用的希望,现有的问题(例如数据一致性和兼容性)已开始解决。
translated by 谷歌翻译
卷积和复发性神经网络的结合是一个有希望的框架,它允许提取高质量时空特征以及其时间依赖性,这是时间序列预测问题(例如预测,分类或异常检测)的关键。在本文中,引入了TSFEDL库。它通过使用卷积和经常性的深神经网络来编译20种时间序列提取和预测的最先进方法,用于在多个数据挖掘任务中使用。该库是建立在AGPLV3许可下的一组TensorFlow+Keras和Pytorch模块上的。本提案中包含的架构的性能验证证实了此Python软件包的有用性。
translated by 谷歌翻译
这项研究重点是探索局部可解释性方法来解释时间序列聚类模型。许多最先进的聚类模型无法直接解释。为了提供这些聚类算法的解释,我们训练分类模型以估计群集标签。然后,我们使用可解释性方法来解释分类模型的决策。这些解释用于获得对聚类模型的见解。我们执行一项详细的数值研究,以测试多个数据集,聚类模型和分类模型上所提出的方法。结果的分析表明,所提出的方法可用于解释时间序列聚类模型,特别是当基础分类模型准确时。最后,我们对结果进行了详细的分析,讨论了如何在现实生活中使用我们的方法。
translated by 谷歌翻译
在时间序列预测的各种软计算方法中,模糊认知地图(FCM)已经显示出显着的结果作为模拟和分析复杂系统动态的工具。 FCM具有与经常性神经网络的相似之处,可以被分类为神经模糊方法。换句话说,FCMS是模糊逻辑,神经网络和专家系统方面的混合,它作为模拟和研究复杂系统的动态行为的强大工具。最有趣的特征是知识解释性,动态特征和学习能力。本调查纸的目标主要是在文献中提出的最相关和最近的基于FCCM的时间序列预测模型概述。此外,本文认为介绍FCM模型和学习方法的基础。此外,该调查提供了一些旨在提高FCM的能力的一些想法,以便在处理非稳定性数据和可扩展性问题等现实实验中涵盖一些挑战。此外,具有快速学习算法的FCMS是该领域的主要问题之一。
translated by 谷歌翻译
手写数字识别(HDR)是光学特征识别(OCR)领域中最具挑战性的任务之一。不管语言如何,HDR都存在一些固有的挑战,这主要是由于个人跨个人的写作风格的变化,编写媒介和环境的变化,无法在反复编写任何数字等时保持相同的笔触。除此之外,特定语言数字的结构复杂性可能会导致HDR的模棱两可。多年来,研究人员开发了许多离线和在线HDR管道,其中不同的图像处理技术与传统的机器学习(ML)基于基于的和/或基于深度学习(DL)的体系结构相结合。尽管文献中存在有关HDR的广泛审查研究的证据,例如:英语,阿拉伯语,印度,法尔西,中文等,但几乎没有对孟加拉人HDR(BHDR)的调查,这缺乏对孟加拉语HDR(BHDR)的研究,而这些调查缺乏对孟加拉语HDR(BHDR)的研究。挑战,基础识别过程以及可能的未来方向。在本文中,已经分析了孟加拉语手写数字的特征和固有的歧义,以及二十年来最先进的数据集的全面见解和离线BHDR的方法。此外,还详细讨论了一些涉及BHDR的现实应用特定研究。本文还将作为对离线BHDR背后科学感兴趣的研究人员的汇编,煽动了对相关研究的新途径的探索,这可能会进一步导致在不同应用领域对孟加拉语手写数字进行更好的离线认识。
translated by 谷歌翻译
紧凑和节能的可穿戴传感器的发展导致生物信号的可用性增加。为了分析这些连续记录的,通常是多维的时间序列,能够进行有意义的无监督数据分割是一个吉祥的目标。实现这一目标的一种常见方法是将时间序列中的变更点确定为分割基础。但是,传统的更改点检测算法通常带有缺点,从而限制了其现实世界的适用性。值得注意的是,他们通常依靠完整的时间序列可用,因此不能用于实时应用程序。另一个常见的限制是,它们处理多维时间序列的分割(或无法)。因此,这项工作的主要贡献是提出一种新型的无监督分段算法,用于多维时间序列,名为潜在空间无监督的语义细分(LS-USS),该算法旨在轻松地与在线和批处理数据一起使用。在将LS-USS与其他最先进的更改点检测算法进行比较时,在各种现实世界数据集上,在离线和实时设置中,LS-USS在PAR或更好的性能上都可以系统地实现。
translated by 谷歌翻译