这项研究重点是探索局部可解释性方法来解释时间序列聚类模型。许多最先进的聚类模型无法直接解释。为了提供这些聚类算法的解释,我们训练分类模型以估计群集标签。然后,我们使用可解释性方法来解释分类模型的决策。这些解释用于获得对聚类模型的见解。我们执行一项详细的数值研究,以测试多个数据集,聚类模型和分类模型上所提出的方法。结果的分析表明,所提出的方法可用于解释时间序列聚类模型,特别是当基础分类模型准确时。最后,我们对结果进行了详细的分析,讨论了如何在现实生活中使用我们的方法。
translated by 谷歌翻译
人工智能(AI)和机器学习(ML)在网络安全挑战中的应用已在行业和学术界的吸引力,部分原因是对关键系统(例如云基础架构和政府机构)的广泛恶意软件攻击。入侵检测系统(IDS)使用某些形式的AI,由于能够以高预测准确性处理大量数据,因此获得了广泛的采用。这些系统托管在组织网络安全操作中心(CSOC)中,作为一种防御工具,可监视和检测恶意网络流,否则会影响机密性,完整性和可用性(CIA)。 CSOC分析师依靠这些系统来决定检测到的威胁。但是,使用深度学习(DL)技术设计的IDS通常被视为黑匣子模型,并且没有为其预测提供理由。这为CSOC分析师造成了障碍,因为他们无法根据模型的预测改善决策。解决此问题的一种解决方案是设计可解释的ID(X-IDS)。这项调查回顾了可解释的AI(XAI)的最先进的ID,目前的挑战,并讨论了这些挑战如何涉及X-ID的设计。特别是,我们全面讨论了黑匣子和白盒方法。我们还在这些方法之间的性能和产生解释的能力方面提出了权衡。此外,我们提出了一种通用体系结构,该建筑认为人类在循环中,该架构可以用作设计X-ID时的指南。研究建议是从三个关键观点提出的:需要定义ID的解释性,需要为各种利益相关者量身定制的解释以及设计指标来评估解释的需求。
translated by 谷歌翻译
多元时间序列(MTS)分类在过去十年中获得了重要性,随着多个域中的时间数数据集数量的增加。目前的最先进的MTS分类器是一种重量级的深度学习方法,其仅在大型数据集上优于第二个最佳MTS分类器。此外,这种深入学习方法不能提供忠诚的解释,因为它依赖于后的HOC模型 - 无止性解释性方法,这可能会阻止其在许多应用中的应用。在本文中,我们展示了XCM,可解释的卷积神经网络用于MTS分类。 XCM是一种新的紧凑型卷积神经网络,其直接从输入数据中提取相对于观察变量的信息。因此,XCM架构在大小的数据集中实现了良好的泛化能力,同时通过精确地识别所观察到的变量和时间戳,允许完全利用忠实的后HOC模型特定的解释方法(梯度加权类激活映射)对预测很重要的数据。首先表明XCM在大型公共UEA数据集中优于最先进的MTS分类器。然后,我们说明了XCM如何在合成数据集上调和性能和解释性,并显示XCM对预测的输入数据的区域的区域更精确地识别,与当前的深度学习MTS分类器相比也提供忠诚的解释性。最后,我们介绍了XCM如何优于现实世界应用中最准确的最先进的算法,同时通过提供忠诚和更具信息性的解释来提高可解释性。
translated by 谷歌翻译
如今,人工智能(AI)已成为临床和远程医疗保健应用程序的基本组成部分,但是最佳性能的AI系统通常太复杂了,无法自我解释。可解释的AI(XAI)技术被定义为揭示系统的预测和决策背后的推理,并且在处理敏感和个人健康数据时,它们变得更加至关重要。值得注意的是,XAI并未在不同的研究领域和数据类型中引起相同的关注,尤其是在医疗保健领域。特别是,许多临床和远程健康应用程序分别基于表格和时间序列数据,而XAI并未在这些数据类型上进行分析,而计算机视觉和自然语言处理(NLP)是参考应用程序。为了提供最适合医疗领域表格和时间序列数据的XAI方法的概述,本文提供了过去5年中文献的审查,说明了生成的解释的类型以及为评估其相关性所提供的努力和质量。具体而言,我们确定临床验证,一致性评估,客观和标准化质量评估以及以人为本的质量评估作为确保最终用户有效解释的关键特征。最后,我们强调了该领域的主要研究挑战以及现有XAI方法的局限性。
translated by 谷歌翻译
尽管有无数的同伴审查的论文,证明了新颖的人工智能(AI)基于大流行期间的Covid-19挑战的解决方案,但很少有临床影响。人工智能在Covid-19大流行期间的影响因缺乏模型透明度而受到极大的限制。这种系统审查考察了在大流行期间使用可解释的人工智能(Xai)以及如何使用它可以克服现实世界成功的障碍。我们发现,Xai的成功使用可以提高模型性能,灌输信任在最终用户,并提供影响用户决策所需的值。我们将读者介绍给常见的XAI技术,其实用程序以及其应用程序的具体例子。 XAI结果的评估还讨论了最大化AI的临床决策支持系统的价值的重要步骤。我们说明了Xai的古典,现代和潜在的未来趋势,以阐明新颖的XAI技术的演变。最后,我们在最近出版物支持的实验设计过程中提供了建议的清单。潜在解决方案的具体示例也解决了AI解决方案期间的共同挑战。我们希望本次审查可以作为提高未来基于AI的解决方案的临床影响的指导。
translated by 谷歌翻译
越来越多的电子健康记录(EHR)数据和深度学习技术进步的越来越多的可用性(DL)已经引发了在开发基于DL的诊断,预后和治疗的DL临床决策支持系统中的研究兴趣激增。尽管承认医疗保健的深度学习的价值,但由于DL的黑匣子性质,实际医疗环境中进一步采用的障碍障碍仍然存在。因此,有一个可解释的DL的新兴需求,它允许最终用户评估模型决策,以便在采用行动之前知道是否接受或拒绝预测和建议。在这篇综述中,我们专注于DL模型在医疗保健中的可解释性。我们首先引入深入解释性的方法,并作为该领域的未来研究人员或临床从业者的方法参考。除了这些方法的细节之外,我们还包括对这些方法的优缺点以及它们中的每个场景都适合的讨论,因此感兴趣的读者可以知道如何比较和选择它们供使用。此外,我们讨论了这些方法,最初用于解决一般域问题,已经适应并应用于医疗保健问题以及如何帮助医生更好地理解这些数据驱动技术。总的来说,我们希望这项调查可以帮助研究人员和从业者在人工智能(AI)和临床领域了解我们为提高其DL模型的可解释性并相应地选择最佳方法。
translated by 谷歌翻译
In the last years many accurate decision support systems have been constructed as black boxes, that is as systems that hide their internal logic to the user. This lack of explanation constitutes both a practical and an ethical issue. The literature reports many approaches aimed at overcoming this crucial weakness sometimes at the cost of scarifying accuracy for interpretability. The applications in which black box decision systems can be used are various, and each approach is typically developed to provide a solution for a specific problem and, as a consequence, delineating explicitly or implicitly its own definition of interpretability and explanation. The aim of this paper is to provide a classification of the main problems addressed in the literature with respect to the notion of explanation and the type of black box system. Given a problem definition, a black box type, and a desired explanation this survey should help the researcher to find the proposals more useful for his own work. The proposed classification of approaches to open black box models should also be useful for putting the many research open questions in perspective.
translated by 谷歌翻译
在人类循环机器学习应用程序的背景下,如决策支持系统,可解释性方法应在不使用户等待的情况下提供可操作的见解。在本文中,我们提出了加速的模型 - 不可知论解释(ACME),一种可解释的方法,即在全球和本地层面迅速提供特征重要性分数。可以将acme应用于每个回归或分类模型的后验。 ACME计算功能排名不仅提供了一个什么,但它还提供了一个用于评估功能值的变化如何影响模型预测的原因 - 如果分析工具。我们评估了综合性和现实世界数据集的建议方法,同时也与福芙添加剂解释(Shap)相比,我们制作了灵感的方法,目前是最先进的模型无关的解释性方法。我们在生产解释的质量方面取得了可比的结果,同时急剧减少计算时间并为全局和局部解释提供一致的可视化。为了促进该领域的研究,为重复性,我们还提供了一种存储库,其中代码用于实验。
translated by 谷歌翻译
人工智能(AI)模型的黑框性质不允许用户理解和有时信任该模型创建的输出。在AI应用程序中,不仅结果,而且结果的决策路径至关重要,此类Black-Box AI模型还不够。可解释的人工智能(XAI)解决了此问题,并定义了用户可解释的一组AI模型。最近,有几种XAI模型是通过在医疗保健,军事,能源,金融和工业领域等各个应用领域的黑盒模型缺乏可解释性和解释性来解决有关的问题。尽管XAI的概念最近引起了广泛关注,但它与物联网域的集成尚未完全定义。在本文中,我们在物联网域范围内使用XAI模型对最近的研究进行了深入和系统的综述。我们根据其方法和应用领域对研究进行分类。此外,我们旨在专注于具有挑战性的问题和开放问题,并为未来的方向指导开发人员和研究人员进行未来的未来调查。
translated by 谷歌翻译
检测数据集中的潜在结构是执行数据集分析的重要步骤。然而,用于子类发现的现有最先进的技术是有限的:它们仅限于检测非常少量的异常值,或者它们缺乏处理诸如图像或音频的复杂数据的统计功率。本文提出了解决该子类发现问题的解决方案:通过利用实例说明方法,可以扩展现有分类器以通过分类器的内部决策的差异来检测潜在类。这不仅使用简单的分类技术,还可以使用深度神经网络,允许一种强大而灵活的方法来检测数据集中的潜在结构。有效地,这代表了数据集进入分类器的“解释空间”的投影,并且初步结果表明,即使在处理有限的情况下,该技术也越突出了用于检测潜在类的基线。本文还包含用于自动分析分类器的管道,以及用于交互式探索该技术的结果的Web应用程序。
translated by 谷歌翻译
Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-ofthe-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.
translated by 谷歌翻译
与此同时,在可解释的人工智能(XAI)的研究领域中,已经开发了各种术语,动机,方法和评估标准。随着XAI方法的数量大大增长,研究人员以及从业者以及从业者需要一种方法:掌握主题的广度,比较方法,并根据特定用例所需的特征选择正确的XAI方法语境。在文献中,可以找到许多不同细节水平和深度水平的XAI方法分类。虽然他们经常具有不同的焦点,但它们也表现出许多重叠点。本文统一了这些努力,并提供了XAI方法的分类,这是关于目前研究中存在的概念的概念。在结构化文献分析和元研究中,我们识别并审查了XAI方法,指标和方法特征的50多个最引用和最新的调查。总结在调查调查中,我们将文章的术语和概念合并为统一的结构化分类。其中的单一概念总计超过50个不同的选择示例方法,我们相应地分类。分类学可以为初学者,研究人员和从业者提供服务作为XAI方法特征和方面的参考和广泛概述。因此,它提供了针对有针对性的,用例导向的基础和上下文敏感的未来研究。
translated by 谷歌翻译
随着机器学习和深度学习模型在多种领域变得非常普遍,因此采用决策过程的主要保留是它们的黑盒本质。可解释的人工智能(XAI)范式由于其能够降低模型不透明度的能力而获得了很多动力。 XAI方法不仅增加了利益相关者对决策过程的信任,而且还帮助开发商确保了其公平性。最近的努力用于创建透明的模型和事后解释。但是,对于时间序列数据,开发了更少的方法,而在多元数据集方面甚至更少。在这项工作中,我们利用塑形组的固有解释性来开发模型不可知的多元时间序列(MTS)反事实解释算法。反事实可能会通过指示在输入上必须执行哪些更改以改变最终决定,从而对制作黑框模型产生巨大影响。我们在现实生活中的太阳耀斑预测数据集上测试了我们的方法,并证明我们的方法会产生高质量的反事实。此外,与唯一的MTS反事实生成算法的比较表明,除了视觉上可以解释外,我们的解释在接近性,稀疏性和合理性方面也很出色。
translated by 谷歌翻译
我们的研究旨在提出一种新的性能解释性分析框架来评估和基准机学习方法。框架详细介绍了一组特征,其系统化了现有机器学习方法的性能可解释性评估。为了说明框架的使用,我们将其应用于基准测试当前的最先进的多变量时间序列分类器。
translated by 谷歌翻译
人工智能(AI)使机器能够从人类经验中学习,适应新的输入,并执行人类的人类任务。 AI正在迅速发展,从过程自动化到认知增强任务和智能流程/数据分析的方式转换业务方式。然而,人类用户的主要挑战是理解和适当地信任AI算法和方法的结果。在本文中,为了解决这一挑战,我们研究并分析了最近在解释的人工智能(XAI)方法和工具中所做的最新工作。我们介绍了一种新颖的XAI进程,便于生产可解释的模型,同时保持高水平的学习性能。我们提出了一种基于互动的证据方法,以帮助人类用户理解和信任启用AI的算法创建的结果和输出。我们在银行域中采用典型方案进行分析客户交易。我们开发数字仪表板以促进与算法的互动结果,并讨论如何提出的XAI方法如何显着提高数据科学家对理解启用AI的算法结果的置信度。
translated by 谷歌翻译
我们介绍了Omnixai(Omni可解释的AI缩写),这是一个可解释AI(XAI)的开源Python库,它提供了可解释的AI功能和各种可解释的机器学习技术,以解决理解和解释做出的决策的痛苦点通过机器学习(ML)实践。 Omnixai的目标是成为一个一站式综合图书馆,使数据科学家,ML研究人员和从业人员易于解释,他们需要在ML流程的不同阶段进行各种类型的数据,模型和解释方法解释(数据探索,功能工程,模型,模型,发展,评估和决策等)。特别是,我们的库包括一个集成在统一界面中的丰富的解释方法,该方法支持多种数据类型(表格数据,图像,文本,时间序列),多种类型的ML模型(Scikit-Learn中的传统ML和Deep中的传统ML) Pytorch/Tensorflow中的学习模型,以及一系列不同的解释方法,包括“模型特定”和“模型 - 敏捷”的方法(例如特征 - 属性解释,反事实说明,基于梯度的解释,基于梯度的解释等)。对于从业人员而言,图书馆提供了一个易于使用的统一界面,仅通过编写几行代码来生成其应用程序的解释,以及一个GUI仪表板,用于可视化不同的解释,以提供有关决策的更多见解。在此技术报告中,我们介绍了Omnixai的设计原理,系统体系结构和主要功能,并在不同类型的数据,任务和模型中演示了几个示例用例。
translated by 谷歌翻译
The occurrence of vacuum arcs or radio frequency (rf) breakdowns is one of the most prevalent factors limiting the high-gradient performance of normal conducting rf cavities in particle accelerators. In this paper, we search for the existence of previously unrecognized features related to the incidence of rf breakdowns by applying a machine learning strategy to high-gradient cavity data from CERN's test stand for the Compact Linear Collider (CLIC). By interpreting the parameters of the learned models with explainable artificial intelligence (AI), we reverse-engineer physical properties for deriving fast, reliable, and simple rule-based models. Based on 6 months of historical data and dedicated experiments, our models show fractions of data with a high influence on the occurrence of breakdowns. Specifically, it is shown that the field emitted current following an initial breakdown is closely related to the probability of another breakdown occurring shortly thereafter. Results also indicate that the cavity pressure should be monitored with increased temporal resolution in future experiments, to further explore the vacuum activity associated with breakdowns.
translated by 谷歌翻译
Explainability of a classification model is crucial when deployed in real-world decision support systems. Explanations make predictions actionable to the user and should inform about the capabilities and limitations of the system. Existing explanation methods, however, typically only provide explanations for individual predictions. Information about conditions under which the classifier is able to support the decision maker is not available, while for instance information about when the system is not able to differentiate classes can be very helpful. In the development phase it can support the search for new features or combining models, and in the operational phase it supports decision makers in deciding e.g. not to use the system. This paper presents a method to explain the qualities of a trained base classifier, called PERFormance EXplainer (PERFEX). Our method consists of a meta tree learning algorithm that is able to predict and explain under which conditions the base classifier has a high or low error or any other classification performance metric. We evaluate PERFEX using several classifiers and datasets, including a case study with urban mobility data. It turns out that PERFEX typically has high meta prediction performance even if the base classifier is hardly able to differentiate classes, while giving compact performance explanations.
translated by 谷歌翻译
评估能源转型和能源市场自由化对资源充足性的影响是一种越来越重要和苛刻的任务。能量系统的上升复杂性需要足够的能量系统建模方法,从而提高计算要求。此外,随着复杂性,同样调用概率评估和场景分析同样增加不确定性。为了充分和高效地解决这些各种要求,需要来自数据科学领域的新方法来加速当前方法。通过我们的系统文献综述,我们希望缩小三个学科之间的差距(1)电力供应安全性评估,(2)人工智能和(3)实验设计。为此,我们对所选应用领域进行大规模的定量审查,并制作彼此不同学科的合成。在其他发现之外,我们使用基于AI的方法和应用程序的AI方法和应用来确定电力供应模型的复杂安全性的元素,并作为未充分涵盖的应用领域的储存调度和(非)可用性。我们结束了推出了一种新的方法管道,以便在评估电力供应安全评估时充分有效地解决当前和即将到来的挑战。
translated by 谷歌翻译
Artificial intelligence(AI) systems based on deep neural networks (DNNs) and machine learning (ML) algorithms are increasingly used to solve critical problems in bioinformatics, biomedical informatics, and precision medicine. However, complex DNN or ML models that are unavoidably opaque and perceived as black-box methods, may not be able to explain why and how they make certain decisions. Such black-box models are difficult to comprehend not only for targeted users and decision-makers but also for AI developers. Besides, in sensitive areas like healthcare, explainability and accountability are not only desirable properties of AI but also legal requirements -- especially when AI may have significant impacts on human lives. Explainable artificial intelligence (XAI) is an emerging field that aims to mitigate the opaqueness of black-box models and make it possible to interpret how AI systems make their decisions with transparency. An interpretable ML model can explain how it makes predictions and which factors affect the model's outcomes. The majority of state-of-the-art interpretable ML methods have been developed in a domain-agnostic way and originate from computer vision, automated reasoning, or even statistics. Many of these methods cannot be directly applied to bioinformatics problems, without prior customization, extension, and domain adoption. In this paper, we discuss the importance of explainability with a focus on bioinformatics. We analyse and comprehensively overview of model-specific and model-agnostic interpretable ML methods and tools. Via several case studies covering bioimaging, cancer genomics, and biomedical text mining, we show how bioinformatics research could benefit from XAI methods and how they could help improve decision fairness.
translated by 谷歌翻译