多元时间序列(MTS)分类在过去十年中获得了重要性,随着多个域中的时间数数据集数量的增加。目前的最先进的MTS分类器是一种重量级的深度学习方法,其仅在大型数据集上优于第二个最佳MTS分类器。此外,这种深入学习方法不能提供忠诚的解释,因为它依赖于后的HOC模型 - 无止性解释性方法,这可能会阻止其在许多应用中的应用。在本文中,我们展示了XCM,可解释的卷积神经网络用于MTS分类。 XCM是一种新的紧凑型卷积神经网络,其直接从输入数据中提取相对于观察变量的信息。因此,XCM架构在大小的数据集中实现了良好的泛化能力,同时通过精确地识别所观察到的变量和时间戳,允许完全利用忠实的后HOC模型特定的解释方法(梯度加权类激活映射)对预测很重要的数据。首先表明XCM在大型公共UEA数据集中优于最先进的MTS分类器。然后,我们说明了XCM如何在合成数据集上调和性能和解释性,并显示XCM对预测的输入数据的区域的区域更精确地识别,与当前的深度学习MTS分类器相比也提供忠诚的解释性。最后,我们介绍了XCM如何优于现实世界应用中最准确的最先进的算法,同时通过提供忠诚和更具信息性的解释来提高可解释性。
translated by 谷歌翻译
我们的研究旨在提出一种新的性能解释性分析框架来评估和基准机学习方法。框架详细介绍了一组特征,其系统化了现有机器学习方法的性能可解释性评估。为了说明框架的使用,我们将其应用于基准测试当前的最先进的多变量时间序列分类器。
translated by 谷歌翻译
流量分类,即识别网络中流动的应用程序类型,是许多活动(例如,入侵检测,路由)的战略任务。这项任务面临当前深度学习方法无法解决的一些关键挑战。当前方法的设计没有考虑到网络硬件(例如路由器)通常以有限的计算资源运行的事实。此外,他们不满足监管机构强调的忠实解释性的需求。最后,这些流量分类器将在小型数据集上进行评估,这些数据集未能反映现实世界中应用程序的多样性。因此,本文引入了用于互联网交通分类的轻巧,高效且可解释的逐卷卷积神经网络(LEXNET),该网络依赖于新的残留块(用于轻巧和效率目的)和原型层(用于解释性)。基于商业级数据集,我们的评估表明,Lexnet成功地保持了与最佳性能最先进的神经网络相同的准确性,同时提供了前面提到的其他功能。此外,我们说明了方法的解释性特征,这源于检测到的应用程序原型与最终用户的交流,我们通过与事后方法的比较来强调Lexnet解释的忠诚。
translated by 谷歌翻译
Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-ofthe-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.
translated by 谷歌翻译
由于其灵活性和适应性,深度学习已成为技术和业务领域的一定大小的解决方案。它是使用不透明模型实施的,不幸的是,这破坏了结果的可信度。为了更好地了解系统的行为,尤其是由时间序列驱动的系统的行为,在深度学习模型中,所谓的可解释的人工智能(XAI)方法是重要的。时间序列数据有两种主要类型的XAI类型,即模型不可屈服和特定于模型。在这项工作中考虑了模型特定的方法。尽管其他方法采用了类激活映射(CAM)或注意机制,但我们将两种策略合并为单个系统,简称为时间加权的时空可解释的多元时间序列(TSEM)。 TSEM结合了RNN和CNN模型的功能,使RNN隐藏单元被用作CNN具有暂时轴的注意力权重。结果表明TSEM优于XCM。就准确性而言,它与Stam相似,同时还满足了许多解释性标准,包括因果关系,忠诚度和时空性。
translated by 谷歌翻译
数据系列分类是数据科学中的一个重要且具有挑战性的问题。通过找到导致算法做出某些决策的输入的判别部分来解释分类决策是许多应用程序的真正需求。卷积神经网络对于数据系列分类任务表现良好;但是,对于多元数据系列的特定情况,这种类型的算法提供的解释很差。解决这一重要限制是一个重大挑战。在本文中,我们提出了一种新的方法,可以通过突出时间和维度判别信息来解决此问题。我们的贡献是两个方面:我们首先描述一个卷积架构,可以比较维度;然后,我们提出了一种返回DCAM的方法,DCAM是专为多元时间序列(和基于CNN的模型)设计的尺寸类激活图。使用几个合成数据集的实验表明,DCAM不仅比以前的方法更准确,而且是多元时间序列中判别特征发现和分类说明的唯一可行解决方案。本文出现在Sigmod'22中。
translated by 谷歌翻译
这项研究重点是探索局部可解释性方法来解释时间序列聚类模型。许多最先进的聚类模型无法直接解释。为了提供这些聚类算法的解释,我们训练分类模型以估计群集标签。然后,我们使用可解释性方法来解释分类模型的决策。这些解释用于获得对聚类模型的见解。我们执行一项详细的数值研究,以测试多个数据集,聚类模型和分类模型上所提出的方法。结果的分析表明,所提出的方法可用于解释时间序列聚类模型,特别是当基础分类模型准确时。最后,我们对结果进行了详细的分析,讨论了如何在现实生活中使用我们的方法。
translated by 谷歌翻译
可解释的人工智能(XAI)的新兴领域旨在为当今强大但不透明的深度学习模型带来透明度。尽管本地XAI方法以归因图的形式解释了个体预测,从而确定了重要特征的发生位置(但没有提供有关其代表的信息),但全局解释技术可视化模型通常学会的编码的概念。因此,两种方法仅提供部分见解,并留下将模型推理解释的负担。只有少数当代技术旨在将本地和全球XAI背后的原则结合起来,以获取更多信息的解释。但是,这些方法通常仅限于特定的模型体系结构,或对培训制度或数据和标签可用性施加其他要求,这实际上使事后应用程序成为任意预训练的模型。在这项工作中,我们介绍了概念相关性传播方法(CRP)方法,该方法结合了XAI的本地和全球观点,因此允许回答“何处”和“ where”和“什么”问题,而没有其他约束。我们进一步介绍了相关性最大化的原则,以根据模型对模型的有用性找到代表性的示例。因此,我们提高了对激活最大化及其局限性的共同实践的依赖。我们证明了我们方法在各种环境中的能力,展示了概念相关性传播和相关性最大化导致了更加可解释的解释,并通过概念图表,概念组成分析和概念集合和概念子区和概念子区和概念子集和定量研究对模型的表示和推理提供了深刻的见解。它们在细粒度决策中的作用。
translated by 谷歌翻译
卷积神经网络(CNN)以其出色的功能提取能力而闻名,可以从数据中学习模型,但被用作黑匣子。对卷积滤液和相关特征的解释可以帮助建立对CNN的理解,以区分各种类别。在这项工作中,我们关注的是CNN模型的解释性,称为CNNexplain,该模型用于COVID-19和非CoVID-19分类,重点是卷积过滤器的特征解释性,以及这些功能如何有助于分类。具体而言,我们使用了各种可解释的人工智能(XAI)方法,例如可视化,SmoothGrad,Grad-Cam和Lime来提供卷积滤液的解释及相关特征及其在分类中的作用。我们已经分析了使用干咳嗽光谱图的这些方法的解释。从石灰,光滑果实和GRAD-CAM获得的解释结果突出了不同频谱图的重要特征及其与分类的相关性。
translated by 谷歌翻译
如今,人工智能(AI)已成为临床和远程医疗保健应用程序的基本组成部分,但是最佳性能的AI系统通常太复杂了,无法自我解释。可解释的AI(XAI)技术被定义为揭示系统的预测和决策背后的推理,并且在处理敏感和个人健康数据时,它们变得更加至关重要。值得注意的是,XAI并未在不同的研究领域和数据类型中引起相同的关注,尤其是在医疗保健领域。特别是,许多临床和远程健康应用程序分别基于表格和时间序列数据,而XAI并未在这些数据类型上进行分析,而计算机视觉和自然语言处理(NLP)是参考应用程序。为了提供最适合医疗领域表格和时间序列数据的XAI方法的概述,本文提供了过去5年中文献的审查,说明了生成的解释的类型以及为评估其相关性所提供的努力和质量。具体而言,我们确定临床验证,一致性评估,客观和标准化质量评估以及以人为本的质量评估作为确保最终用户有效解释的关键特征。最后,我们强调了该领域的主要研究挑战以及现有XAI方法的局限性。
translated by 谷歌翻译
人工智能被出现为众多临床应用诊断和治疗决策的有用援助。由于可用数据和计算能力的快速增加,深度神经网络的性能与许多任务中的临床医生相同或更好。为了符合信任AI的原则,AI系统至关重要的是透明,强大,公平和确保责任。由于对决策过程的具体细节缺乏了解,目前的深神经系统被称为黑匣子。因此,需要确保在常规临床工作流中纳入常规神经网络之前的深度神经网络的可解释性。在这一叙述审查中,我们利用系统的关键字搜索和域专业知识来确定已经基于所产生的解释和技术相似性的类型的医学图像分析应用的深度学习模型来确定九种不同类型的可解释方法。此外,我们报告了评估各种可解释方法产生的解释的进展。最后,我们讨论了局限性,提供了利用可解释性方法和未来方向的指导,了解医学成像分析深度神经网络的解释性。
translated by 谷歌翻译
去年的特征是不透明的自动决策支持系统(例如深神经网络(DNNS))激增。尽管它们具有出色的概括和预测技能,但其功能不允许对其行为获得详细的解释。由于不透明的机器学习模型越来越多地用于在关键环境中做出重要的预测,因此危险是创建和使用不合理或合法的决策。因此,关于赋予机器学习模型具有解释性的重要性有一个普遍的共识。可解释的人工智能(XAI)技术可以用来验证和认证模型输出,并以可信赖,问责制,透明度和公平等理想的概念来增强它们。本指南旨在成为任何具有计算机科学背景的受众的首选手册,旨在获得对机器学习模型的直观见解,并伴随着笔直,快速和直观的解释。本文旨在通过在其特定的日常型号,数据集和用例中应用XAI技术来填补缺乏引人注目的XAI指南。图1充当读者的流程图/地图,应帮助他根据自己的数据类型找到理想的使用方法。在每章中,读者将找到所提出的方法的描述,以及在生物医学应用程序和Python笔记本上使用的示例。它可以轻松修改以应用于特定应用程序。
translated by 谷歌翻译
深度学习的显着成功引起了人们对医学成像诊断的应用的兴趣。尽管最新的深度学习模型在分类不同类型的医学数据方面已经达到了人类水平的准确性,但这些模型在临床工作流程中几乎不采用,这主要是由于缺乏解释性。深度学习模型的黑盒子性提出了制定策略来解释这些模型的决策过程的必要性,从而导致了可解释的人工智能(XAI)主题的创建。在这种情况下,我们对应用于医学成像诊断的XAI进行了详尽的调查,包括视觉,基于示例和基于概念的解释方法。此外,这项工作回顾了现有的医学成像数据集和现有的指标,以评估解释的质量。此外,我们还包括一组基于报告生成的方法的性能比较。最后,还讨论了将XAI应用于医学成像以及有关该主题的未来研究指示的主要挑战。
translated by 谷歌翻译
人工智能(AI)和机器学习(ML)在网络安全挑战中的应用已在行业和学术界的吸引力,部分原因是对关键系统(例如云基础架构和政府机构)的广泛恶意软件攻击。入侵检测系统(IDS)使用某些形式的AI,由于能够以高预测准确性处理大量数据,因此获得了广泛的采用。这些系统托管在组织网络安全操作中心(CSOC)中,作为一种防御工具,可监视和检测恶意网络流,否则会影响机密性,完整性和可用性(CIA)。 CSOC分析师依靠这些系统来决定检测到的威胁。但是,使用深度学习(DL)技术设计的IDS通常被视为黑匣子模型,并且没有为其预测提供理由。这为CSOC分析师造成了障碍,因为他们无法根据模型的预测改善决策。解决此问题的一种解决方案是设计可解释的ID(X-IDS)。这项调查回顾了可解释的AI(XAI)的最先进的ID,目前的挑战,并讨论了这些挑战如何涉及X-ID的设计。特别是,我们全面讨论了黑匣子和白盒方法。我们还在这些方法之间的性能和产生解释的能力方面提出了权衡。此外,我们提出了一种通用体系结构,该建筑认为人类在循环中,该架构可以用作设计X-ID时的指南。研究建议是从三个关键观点提出的:需要定义ID的解释性,需要为各种利益相关者量身定制的解释以及设计指标来评估解释的需求。
translated by 谷歌翻译
The occurrence of vacuum arcs or radio frequency (rf) breakdowns is one of the most prevalent factors limiting the high-gradient performance of normal conducting rf cavities in particle accelerators. In this paper, we search for the existence of previously unrecognized features related to the incidence of rf breakdowns by applying a machine learning strategy to high-gradient cavity data from CERN's test stand for the Compact Linear Collider (CLIC). By interpreting the parameters of the learned models with explainable artificial intelligence (AI), we reverse-engineer physical properties for deriving fast, reliable, and simple rule-based models. Based on 6 months of historical data and dedicated experiments, our models show fractions of data with a high influence on the occurrence of breakdowns. Specifically, it is shown that the field emitted current following an initial breakdown is closely related to the probability of another breakdown occurring shortly thereafter. Results also indicate that the cavity pressure should be monitored with increased temporal resolution in future experiments, to further explore the vacuum activity associated with breakdowns.
translated by 谷歌翻译
尽管有无数的同伴审查的论文,证明了新颖的人工智能(AI)基于大流行期间的Covid-19挑战的解决方案,但很少有临床影响。人工智能在Covid-19大流行期间的影响因缺乏模型透明度而受到极大的限制。这种系统审查考察了在大流行期间使用可解释的人工智能(Xai)以及如何使用它可以克服现实世界成功的障碍。我们发现,Xai的成功使用可以提高模型性能,灌输信任在最终用户,并提供影响用户决策所需的值。我们将读者介绍给常见的XAI技术,其实用程序以及其应用程序的具体例子。 XAI结果的评估还讨论了最大化AI的临床决策支持系统的价值的重要步骤。我们说明了Xai的古典,现代和潜在的未来趋势,以阐明新颖的XAI技术的演变。最后,我们在最近出版物支持的实验设计过程中提供了建议的清单。潜在解决方案的具体示例也解决了AI解决方案期间的共同挑战。我们希望本次审查可以作为提高未来基于AI的解决方案的临床影响的指导。
translated by 谷歌翻译
随着深度神经网络的兴起,解释这些网络预测的挑战已经越来越识别。虽然存在许多用于解释深度神经网络的决策的方法,但目前没有关于如何评估它们的共识。另一方面,鲁棒性是深度学习研究的热门话题;但是,在最近,几乎没有谈论解释性。在本教程中,我们首先呈现基于梯度的可解释性方法。这些技术使用梯度信号来分配对输入特征的决定的负担。后来,我们讨论如何为其鲁棒性和对抗性的鲁棒性在具有有意义的解释中扮演的作用来评估基于梯度的方法。我们还讨论了基于梯度的方法的局限性。最后,我们提出了在选择解释性方法之前应检查的最佳实践和属性。我们结束了未来在稳健性和解释性融合的地区研究的研究。
translated by 谷歌翻译
Future surveys such as the Legacy Survey of Space and Time (LSST) of the Vera C. Rubin Observatory will observe an order of magnitude more astrophysical transient events than any previous survey before. With this deluge of photometric data, it will be impossible for all such events to be classified by humans alone. Recent efforts have sought to leverage machine learning methods to tackle the challenge of astronomical transient classification, with ever improving success. Transformers are a recently developed deep learning architecture, first proposed for natural language processing, that have shown a great deal of recent success. In this work we develop a new transformer architecture, which uses multi-head self attention at its core, for general multi-variate time-series data. Furthermore, the proposed time-series transformer architecture supports the inclusion of an arbitrary number of additional features, while also offering interpretability. We apply the time-series transformer to the task of photometric classification, minimising the reliance of expert domain knowledge for feature selection, while achieving results comparable to state-of-the-art photometric classification methods. We achieve a logarithmic-loss of 0.507 on imbalanced data in a representative setting using data from the Photometric LSST Astronomical Time-Series Classification Challenge (PLAsTiCC). Moreover, we achieve a micro-averaged receiver operating characteristic area under curve of 0.98 and micro-averaged precision-recall area under curve of 0.87.
translated by 谷歌翻译
由于当今网络和应用程序的快速增长,互联网流量的分类变得越来越重要。我们网络中的连接数量和新应用程序的添加会导致大量日志数据,并使专家搜索常见模式变得复杂。在特定类别的应用程序中找到此类模式对于满足网络分析中的各种要求是必要的。深度学习方法同时从单个系统中的数据中提供特征提取和分类。但是,这些网络非常复杂,被用作黑框模型,它削弱了专家对分类的信任。此外,通过将它们用作黑色框,尽管其表现出色,但仍无法从模型预测中获得新知识。因此,分类的解释性至关重要。除了增加信任外,该解释还可以用于模型评估,从数据中获得新的见解并改善模型。在本文中,我们提出了一个视觉交互式工具,该工具将网络数据的分类与解释技术结合在一起,以在专家,算法和数据之间形成接口。
translated by 谷歌翻译
用于头部和颈鳞状细胞癌(HNSCC)的诊断和治疗管理由常规诊断头和颈部计算断层扫描(CT)扫描引导,以识别肿瘤和淋巴结特征。折叠延伸(ECE)是患者的患者生存结果与HNSCC的强烈预测因子。在改变患者的暂存和管理时,必须检测ECE的发生至关重要。目前临床ECE检测依赖于放射科学医生进行的视觉鉴定和病理确认。基于机器学习(ML)的ECE诊断在近年来的潜力上表现出很高的潜力。然而,在大多数基于ML的ECE诊断研究中,手动注释是淋巴结区域的必要数据预处理步骤。此外,本手册注释过程是耗时,劳动密集型和容易出错。因此,在本文中,我们提出了一种梯度映射引导的可解释网络(GMGenet)框架,以自动执行ECE识别而不需要注释的淋巴结区域信息。提出了梯度加权类激活映射(GRAC-CAM)技术,以指导深度学习算法专注于与ECE高度相关的区域。提取信息丰富的兴趣(VoIS),无需标记淋巴结区域信息。在评估中,所提出的方法是使用交叉验证的训练和测试,可分别实现测试精度和90.2%和91.1%的AUC。已经分析了ECE的存在或不存在并与黄金标准组织病理学发现相关。
translated by 谷歌翻译