流量分类,即识别网络中流动的应用程序类型,是许多活动(例如,入侵检测,路由)的战略任务。这项任务面临当前深度学习方法无法解决的一些关键挑战。当前方法的设计没有考虑到网络硬件(例如路由器)通常以有限的计算资源运行的事实。此外,他们不满足监管机构强调的忠实解释性的需求。最后,这些流量分类器将在小型数据集上进行评估,这些数据集未能反映现实世界中应用程序的多样性。因此,本文引入了用于互联网交通分类的轻巧,高效且可解释的逐卷卷积神经网络(LEXNET),该网络依赖于新的残留块(用于轻巧和效率目的)和原型层(用于解释性)。基于商业级数据集,我们的评估表明,Lexnet成功地保持了与最佳性能最先进的神经网络相同的准确性,同时提供了前面提到的其他功能。此外,我们说明了方法的解释性特征,这源于检测到的应用程序原型与最终用户的交流,我们通过与事后方法的比较来强调Lexnet解释的忠诚。
translated by 谷歌翻译
多元时间序列(MTS)分类在过去十年中获得了重要性,随着多个域中的时间数数据集数量的增加。目前的最先进的MTS分类器是一种重量级的深度学习方法,其仅在大型数据集上优于第二个最佳MTS分类器。此外,这种深入学习方法不能提供忠诚的解释,因为它依赖于后的HOC模型 - 无止性解释性方法,这可能会阻止其在许多应用中的应用。在本文中,我们展示了XCM,可解释的卷积神经网络用于MTS分类。 XCM是一种新的紧凑型卷积神经网络,其直接从输入数据中提取相对于观察变量的信息。因此,XCM架构在大小的数据集中实现了良好的泛化能力,同时通过精确地识别所观察到的变量和时间戳,允许完全利用忠实的后HOC模型特定的解释方法(梯度加权类激活映射)对预测很重要的数据。首先表明XCM在大型公共UEA数据集中优于最先进的MTS分类器。然后,我们说明了XCM如何在合成数据集上调和性能和解释性,并显示XCM对预测的输入数据的区域的区域更精确地识别,与当前的深度学习MTS分类器相比也提供忠诚的解释性。最后,我们介绍了XCM如何优于现实世界应用中最准确的最先进的算法,同时通过提供忠诚和更具信息性的解释来提高可解释性。
translated by 谷歌翻译
我们的研究旨在提出一种新的性能解释性分析框架来评估和基准机学习方法。框架详细介绍了一组特征,其系统化了现有机器学习方法的性能可解释性评估。为了说明框架的使用,我们将其应用于基准测试当前的最先进的多变量时间序列分类器。
translated by 谷歌翻译
哥内克人Sentinel Imagery的纯粹卷的可用性为使用深度学习的大尺度创造了新的土地利用陆地覆盖(Lulc)映射的机会。虽然在这种大型数据集上培训是一个非琐碎的任务。在这项工作中,我们试验Lulc Image分类和基准不同最先进模型的Bigearthnet数据集,包括卷积神经网络,多层感知,视觉变压器,高效导通和宽残余网络(WRN)架构。我们的目标是利用分类准确性,培训时间和推理率。我们提出了一种基于用于网络深度,宽度和输入数据分辨率的WRNS复合缩放的高效导通的框架,以有效地训练和测试不同的模型设置。我们设计一种新颖的缩放WRN架构,增强了有效的通道注意力机制。我们提出的轻量级模型具有较小的培训参数,实现所有19个LULC类的平均F分类准确度达到4.5%,并且验证了我们使用的resnet50最先进的模型速度快两倍作为基线。我们提供超过50种培训的型号,以及我们在多个GPU节点上分布式培训的代码。
translated by 谷歌翻译
由于存储器和计算资源有限,部署在移动设备上的卷积神经网络(CNNS)是困难的。我们的目标是通过利用特征图中的冗余来设计包括CPU和GPU的异构设备的高效神经网络,这很少在神经结构设计中进行了研究。对于类似CPU的设备,我们提出了一种新颖的CPU高效的Ghost(C-Ghost)模块,以生成从廉价操作的更多特征映射。基于一组内在的特征映射,我们使用廉价的成本应用一系列线性变换,以生成许多幽灵特征图,可以完全揭示内在特征的信息。所提出的C-Ghost模块可以作为即插即用组件,以升级现有的卷积神经网络。 C-Ghost瓶颈旨在堆叠C-Ghost模块,然后可以轻松建立轻量级的C-Ghostnet。我们进一步考虑GPU设备的有效网络。在建筑阶段的情况下,不涉及太多的GPU效率(例如,深度明智的卷积),我们建议利用阶段明智的特征冗余来制定GPU高效的幽灵(G-GHOST)阶段结构。舞台中的特征被分成两个部分,其中使用具有较少输出通道的原始块处理第一部分,用于生成内在特征,另一个通过利用阶段明智的冗余来生成廉价的操作。在基准测试上进行的实验证明了所提出的C-Ghost模块和G-Ghost阶段的有效性。 C-Ghostnet和G-Ghostnet分别可以分别实现CPU和GPU的准确性和延迟的最佳权衡。代码可在https://github.com/huawei-noah/cv-backbones获得。
translated by 谷歌翻译
Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-ofthe-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.
translated by 谷歌翻译
由于当今网络和应用程序的快速增长,互联网流量的分类变得越来越重要。我们网络中的连接数量和新应用程序的添加会导致大量日志数据,并使专家搜索常见模式变得复杂。在特定类别的应用程序中找到此类模式对于满足网络分析中的各种要求是必要的。深度学习方法同时从单个系统中的数据中提供特征提取和分类。但是,这些网络非常复杂,被用作黑框模型,它削弱了专家对分类的信任。此外,通过将它们用作黑色框,尽管其表现出色,但仍无法从模型预测中获得新知识。因此,分类的解释性至关重要。除了增加信任外,该解释还可以用于模型评估,从数据中获得新的见解并改善模型。在本文中,我们提出了一个视觉交互式工具,该工具将网络数据的分类与解释技术结合在一起,以在专家,算法和数据之间形成接口。
translated by 谷歌翻译
我们提出了一个用于图像分类的端到端可训练的功能增强模块,该模块提取和利用多视图本地功能来增强模型性能。不同于使用全球平均池(GAP)仅从全局视图中提取矢量化特征,我们建议我们采样和集成多样的多视图本地特征,以提高模型鲁棒性。为了示例班级代表性的本地功能,我们合并了一个简单的辅助分类器头(仅包含1 $ \ times $ 1卷积层),通过我们建议的Adacam(适应性的Adacam)(适应性的Adacam)(适应性的ADACAM)有效地适应了特征图的类别歧视局部区域()。广泛的实验表明,我们的多视图功能增强模块获得了一致且明显的性能提高。
translated by 谷歌翻译
深度学习的显着成功引起了人们对医学成像诊断的应用的兴趣。尽管最新的深度学习模型在分类不同类型的医学数据方面已经达到了人类水平的准确性,但这些模型在临床工作流程中几乎不采用,这主要是由于缺乏解释性。深度学习模型的黑盒子性提出了制定策略来解释这些模型的决策过程的必要性,从而导致了可解释的人工智能(XAI)主题的创建。在这种情况下,我们对应用于医学成像诊断的XAI进行了详尽的调查,包括视觉,基于示例和基于概念的解释方法。此外,这项工作回顾了现有的医学成像数据集和现有的指标,以评估解释的质量。此外,我们还包括一组基于报告生成的方法的性能比较。最后,还讨论了将XAI应用于医学成像以及有关该主题的未来研究指示的主要挑战。
translated by 谷歌翻译
能够分析和量化人体或行为特征的系统(称为生物识别系统)正在使用和应用变异性增长。由于其从手工制作的功能和传统的机器学习转变为深度学习和自动特征提取,因此生物识别系统的性能增加到了出色的价值。尽管如此,这种快速进步的成本仍然尚不清楚。由于其不透明度,深层神经网络很难理解和分析,因此,由错误动机动机动机的隐藏能力或决定是潜在的风险。研究人员已经开始将注意力集中在理解深度神经网络及其预测的解释上。在本文中,我们根据47篇论文的研究提供了可解释生物识别技术的当前状态,并全面讨论了该领域的发展方向。
translated by 谷歌翻译
人工智能被出现为众多临床应用诊断和治疗决策的有用援助。由于可用数据和计算能力的快速增加,深度神经网络的性能与许多任务中的临床医生相同或更好。为了符合信任AI的原则,AI系统至关重要的是透明,强大,公平和确保责任。由于对决策过程的具体细节缺乏了解,目前的深神经系统被称为黑匣子。因此,需要确保在常规临床工作流中纳入常规神经网络之前的深度神经网络的可解释性。在这一叙述审查中,我们利用系统的关键字搜索和域专业知识来确定已经基于所产生的解释和技术相似性的类型的医学图像分析应用的深度学习模型来确定九种不同类型的可解释方法。此外,我们报告了评估各种可解释方法产生的解释的进展。最后,我们讨论了局限性,提供了利用可解释性方法和未来方向的指导,了解医学成像分析深度神经网络的解释性。
translated by 谷歌翻译
Deploying convolutional neural networks (CNNs) on embedded devices is difficult due to the limited memory and computation resources. The redundancy in feature maps is an important characteristic of those successful CNNs, but has rarely been investigated in neural architecture design. This paper proposes a novel Ghost module to generate more feature maps from cheap operations. Based on a set of intrinsic feature maps, we apply a series of linear transformations with cheap cost to generate many ghost feature maps that could fully reveal information underlying intrinsic features. The proposed Ghost module can be taken as a plug-and-play component to upgrade existing convolutional neural networks. Ghost bottlenecks are designed to stack Ghost modules, and then the lightweight Ghost-Net can be easily established. Experiments conducted on benchmarks demonstrate that the proposed Ghost module is an impressive alternative of convolution layers in baseline models, and our GhostNet can achieve higher recognition performance (e.g. 75.7% top-1 accuracy) than MobileNetV3 with similar computational cost on the ImageNet ILSVRC-2012 classification dataset. Code is available at https: //github.com/huawei-noah/ghostnet.
translated by 谷歌翻译
卷积神经网络(CNN)在一系列医学成像任务中表现出了出色的性能。但是,常规的CNN无法解释其推理过程,因此限制了它们在临床实践中的采用。在这项工作中,我们建议使用基于相似性的比较(Indightr-net)回归的固有解释的CNN,并演示了我们关于糖尿病性视网膜病变的任务的方法。结合到体系结构中的原型层可以可视化图像中与学到的原型最相似的区域。然后将最终预测直观地建模为原型标签的平均值,并由相似性加权。与重新网基的基线相比,我们在无效的网络中实现了竞争性预测性能,这表明没有必要损害性能以实现可解释性。此外,我们使用稀疏性和多样性量化了解释的质量,这两个概念对良好的解释很重要,并证明了几个参数对潜在空间嵌入的影响。
translated by 谷歌翻译
数据系列分类是数据科学中的一个重要且具有挑战性的问题。通过找到导致算法做出某些决策的输入的判别部分来解释分类决策是许多应用程序的真正需求。卷积神经网络对于数据系列分类任务表现良好;但是,对于多元数据系列的特定情况,这种类型的算法提供的解释很差。解决这一重要限制是一个重大挑战。在本文中,我们提出了一种新的方法,可以通过突出时间和维度判别信息来解决此问题。我们的贡献是两个方面:我们首先描述一个卷积架构,可以比较维度;然后,我们提出了一种返回DCAM的方法,DCAM是专为多元时间序列(和基于CNN的模型)设计的尺寸类激活图。使用几个合成数据集的实验表明,DCAM不仅比以前的方法更准确,而且是多元时间序列中判别特征发现和分类说明的唯一可行解决方案。本文出现在Sigmod'22中。
translated by 谷歌翻译
由于其灵活性和适应性,深度学习已成为技术和业务领域的一定大小的解决方案。它是使用不透明模型实施的,不幸的是,这破坏了结果的可信度。为了更好地了解系统的行为,尤其是由时间序列驱动的系统的行为,在深度学习模型中,所谓的可解释的人工智能(XAI)方法是重要的。时间序列数据有两种主要类型的XAI类型,即模型不可屈服和特定于模型。在这项工作中考虑了模型特定的方法。尽管其他方法采用了类激活映射(CAM)或注意机制,但我们将两种策略合并为单个系统,简称为时间加权的时空可解释的多元时间序列(TSEM)。 TSEM结合了RNN和CNN模型的功能,使RNN隐藏单元被用作CNN具有暂时轴的注意力权重。结果表明TSEM优于XCM。就准确性而言,它与Stam相似,同时还满足了许多解释性标准,包括因果关系,忠诚度和时空性。
translated by 谷歌翻译
While machine learning is traditionally a resource intensive task, embedded systems, autonomous navigation, and the vision of the Internet of Things fuel the interest in resource-efficient approaches. These approaches aim for a carefully chosen trade-off between performance and resource consumption in terms of computation and energy. The development of such approaches is among the major challenges in current machine learning research and key to ensure a smooth transition of machine learning technology from a scientific environment with virtually unlimited computing resources into everyday's applications. In this article, we provide an overview of the current state of the art of machine learning techniques facilitating these real-world requirements. In particular, we focus on deep neural networks (DNNs), the predominant machine learning models of the past decade. We give a comprehensive overview of the vast literature that can be mainly split into three non-mutually exclusive categories: (i) quantized neural networks, (ii) network pruning, and (iii) structural efficiency. These techniques can be applied during training or as post-processing, and they are widely used to reduce the computational demands in terms of memory footprint, inference speed, and energy efficiency. We also briefly discuss different concepts of embedded hardware for DNNs and their compatibility with machine learning techniques as well as potential for energy and latency reduction. We substantiate our discussion with experiments on well-known benchmark datasets using compression techniques (quantization, pruning) for a set of resource-constrained embedded systems, such as CPUs, GPUs and FPGAs. The obtained results highlight the difficulty of finding good trade-offs between resource efficiency and predictive performance.
translated by 谷歌翻译
人工智能(AI)和机器学习(ML)在网络安全挑战中的应用已在行业和学术界的吸引力,部分原因是对关键系统(例如云基础架构和政府机构)的广泛恶意软件攻击。入侵检测系统(IDS)使用某些形式的AI,由于能够以高预测准确性处理大量数据,因此获得了广泛的采用。这些系统托管在组织网络安全操作中心(CSOC)中,作为一种防御工具,可监视和检测恶意网络流,否则会影响机密性,完整性和可用性(CIA)。 CSOC分析师依靠这些系统来决定检测到的威胁。但是,使用深度学习(DL)技术设计的IDS通常被视为黑匣子模型,并且没有为其预测提供理由。这为CSOC分析师造成了障碍,因为他们无法根据模型的预测改善决策。解决此问题的一种解决方案是设计可解释的ID(X-IDS)。这项调查回顾了可解释的AI(XAI)的最先进的ID,目前的挑战,并讨论了这些挑战如何涉及X-ID的设计。特别是,我们全面讨论了黑匣子和白盒方法。我们还在这些方法之间的性能和产生解释的能力方面提出了权衡。此外,我们提出了一种通用体系结构,该建筑认为人类在循环中,该架构可以用作设计X-ID时的指南。研究建议是从三个关键观点提出的:需要定义ID的解释性,需要为各种利益相关者量身定制的解释以及设计指标来评估解释的需求。
translated by 谷歌翻译
Semantic segmentation works on the computer vision algorithm for assigning each pixel of an image into a class. The task of semantic segmentation should be performed with both accuracy and efficiency. Most of the existing deep FCNs yield to heavy computations and these networks are very power hungry, unsuitable for real-time applications on portable devices. This project analyzes current semantic segmentation models to explore the feasibility of applying these models for emergency response during catastrophic events. We compare the performance of real-time semantic segmentation models with non-real-time counterparts constrained by aerial images under oppositional settings. Furthermore, we train several models on the Flood-Net dataset, containing UAV images captured after Hurricane Harvey, and benchmark their execution on special classes such as flooded buildings vs. non-flooded buildings or flooded roads vs. non-flooded roads. In this project, we developed a real-time UNet based model and deployed that network on Jetson AGX Xavier module.
translated by 谷歌翻译
由于其弱监督性,多个实例学习(MIL)在许多现实生活中的机器学习应用中都获得了受欢迎程度。但是,解释MIL滞后的相应努力,通常仅限于提出对特定预测至关重要的袋子的实例。在本文中,我们通过引入Protomil,这是一种新型的自我解释的MIL方法,该方法受到基于案例的推理过程的启发,该方法是基于案例的推理过程,该方法在视觉原型上运行。由于将原型特征纳入对象描述中,Protomil空前加入了模型的准确性和细粒度的可解释性,我们在五个公认的MIL数据集上进行了实验。
translated by 谷歌翻译
When we are faced with challenging image classification tasks, we often explain our reasoning by dissecting the image, and pointing out prototypical aspects of one class or another. The mounting evidence for each of the classes helps us make our final decision. In this work, we introduce a deep network architectureprototypical part network (ProtoPNet), that reasons in a similar way: the network dissects the image by finding prototypical parts, and combines evidence from the prototypes to make a final classification. The model thus reasons in a way that is qualitatively similar to the way ornithologists, physicians, and others would explain to people on how to solve challenging image classification tasks. The network uses only image-level labels for training without any annotations for parts of images. We demonstrate our method on the CUB-200-2011 dataset and the Stanford Cars dataset. Our experiments show that ProtoPNet can achieve comparable accuracy with its analogous non-interpretable counterpart, and when several ProtoPNets are combined into a larger network, it can achieve an accuracy that is on par with some of the best-performing deep models. Moreover, ProtoPNet provides a level of interpretability that is absent in other interpretable deep models. * Contributed equally † DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.
translated by 谷歌翻译