联合学习(FL)是机器学习的一个子领域,在该子机学习中,多个客户试图在通信约束下通过网络进行协作学习模型。我们考虑在二阶功能相似性条件和强凸度下联合优化的有限和联合优化,并提出了两种新算法:SVRP和催化的SVRP。这种二阶相似性条件最近越来越流行,并且在包括分布式统计学习和差异性经验风险最小化在内的许多应用中得到满足。第一种算法SVRP结合了近似随机点评估,客户采样和降低方差。我们表明,当功能相似性足够高时,SVRP是沟通有效的,并且在许多现有算法上取得了卓越的性能。我们的第二个算法,催化的SVRP,是SVRP的催化剂加速变体,在二阶相似性和强凸度下,现有的联合优化算法可实现更好的性能,并均匀地改善了现有的算法。在分析这些算法的过程中,我们提供了可能具有独立关注的随机近端方法(SPPM)的新分析。我们对SPPM的分析很简单,允许进行近似近端评估,不需要任何平滑度假设,并且在通信复杂性上比普通分布式随机梯度下降显示出明显的好处。
translated by 谷歌翻译
联邦学习(FL)是一种越来越受欢迎的机器学习范式,其中多个节点在隐私,通信和多个异质性约束下尝试协同学习。联邦学习中的持续存在问题是,不清楚优化目标应该:监督学习的标准平均风险最小化在处理联合学习的几个主要限制方面是不充分的,例如沟通适应性和个性化控制。我们在联合学习的框架中识别几个关键的Desiderata,并介绍了一个新的框架,Flix,考虑到联合学习所带来的独特挑战。 Flix具有标准的有限和形式,使从业者能够利用分布式优化的现有(潜在非本地)方法的巨大财富。通过不需要任何通信的智能初始化,Flix不需要使用本地步骤,但仍然可以通过本地方法执行不一致的正则化。我们提供了几种用于在通信约束下有效解决FLIX制剂的算法。最后,我们通过广泛的实验证实了我们的理论结果。
translated by 谷歌翻译
Federated Averaging (FEDAVG) has emerged as the algorithm of choice for federated learning due to its simplicity and low communication cost. However, in spite of recent research efforts, its performance is not fully understood. We obtain tight convergence rates for FEDAVG and prove that it suffers from 'client-drift' when the data is heterogeneous (non-iid), resulting in unstable and slow convergence.As a solution, we propose a new algorithm (SCAFFOLD) which uses control variates (variance reduction) to correct for the 'client-drift' in its local updates. We prove that SCAFFOLD requires significantly fewer communication rounds and is not affected by data heterogeneity or client sampling. Further, we show that (for quadratics) SCAFFOLD can take advantage of similarity in the client's data yielding even faster convergence. The latter is the first result to quantify the usefulness of local-steps in distributed optimization.
translated by 谷歌翻译
梯度压缩是一种流行的技术,可改善机器学习模型分布式培训中随机一阶方法的沟通复杂性。但是,现有作品仅考虑随机梯度的替换采样。相比之下,在实践中众所周知,最近从理论上证实,基于没有替代抽样的随机方法,例如随机改组方法(RR)方法,其性能要比用更换梯度进行梯度的方法更好。在这项工作中,我们在文献中缩小了这一差距,并通过梯度压缩和没有替代抽样的方法提供了第一次分析方法。我们首先使用梯度压缩(Q-RR)开发一个随机重新填充的分布式变体,并展示如何通过使用控制迭代来减少梯度量化的方差。接下来,为了更好地适合联合学习应用程序,我们结合了本地计算,并提出了一种称为Q-Nastya的Q-RR的变体。 Q-Nastya使用本地梯度步骤以及不同的本地和全球步骤。接下来,我们还展示了如何在此设置中减少压缩差异。最后,我们证明了所提出的方法的收敛结果,并概述了它们在现有算法上改进的几种设置。
translated by 谷歌翻译
The celebrated FedAvg algorithm of McMahan et al. (2017) is based on three components: client sampling (CS), data sampling (DS) and local training (LT). While the first two are reasonably well understood, the third component, whose role is to reduce the number of communication rounds needed to train the model, resisted all attempts at a satisfactory theoretical explanation. Malinovsky et al. (2022) identified four distinct generations of LT methods based on the quality of the provided theoretical communication complexity guarantees. Despite a lot of progress in this area, none of the existing works were able to show that it is theoretically better to employ multiple local gradient-type steps (i.e., to engage in LT) than to rely on a single local gradient-type step only in the important heterogeneous data regime. In a recent breakthrough embodied in their ProxSkip method and its theoretical analysis, Mishchenko et al. (2022) showed that LT indeed leads to provable communication acceleration for arbitrarily heterogeneous data, thus jump-starting the $5^{\rm th}$ generation of LT methods. However, while these latest generation LT methods are compatible with DS, none of them support CS. We resolve this open problem in the affirmative. In order to do so, we had to base our algorithmic development on new algorithmic and theoretical foundations.
translated by 谷歌翻译
我们研究基于{\ em本地培训(LT)}范式的分布式优化方法:通过在参数平均之前对客户进行基于本地梯度的培训来实现沟通效率。回顾田地的进度,我们{\ em识别5代LT方法}:1)启发式,2)均匀,3)sublinear,4)线性和5)加速。由Mishchenko,Malinovsky,Stich和Richt \'{A} Rik(2022)发起的5 $ {}^{\ rm th} $生成,由Proxskip方法发起通信加速机制。受到最近进度的启发,我们通过证明可以使用{\ em差异}进一步增强它们,为5 $ {}^{\ rm th} $生成LT方法的生成。尽管LT方法的所有以前的所有理论结果都完全忽略了本地工作的成本,并且仅根据交流回合的数量而被构成,但我们证明我们的方法在{\ em总培训成本方面都比{\ em em总培训成本}大得多当本地计算足够昂贵时,在制度中的理论和实践中,最先进的方法是proxskip。我们从理论上表征了这个阈值,并通过经验结果证实了我们的理论预测。
translated by 谷歌翻译
联合学习(FL)旨在最大程度地减少培训模型的沟通复杂性,而不是在许多客户中分发的异质数据。一种常见的方法是本地方法,在与服务器通信之前,客户端在本地数据(例如FedAvg)之前对本地数据进行了多个优化步骤。本地方法可以利用客户数据之间的相似性。但是,在现有的分析中,这是以依赖对通信的数量的依赖为代价的。另一方面,全球方法,客户只是在每个回合中返回梯度向量(例如,SGD) ,以R的速度更快,但即使客户均匀,也无法利用客户之间的相似性。我们提出了FedChain,这是一种算法框架,结合了本地方法和全球方法的优势,以实现R的快速收敛,同时利用客户之间的相似性。使用Fedchain,我们实例化了在一般凸和PL设置中先前已知的速率改进的算法,并且在满足强凸度的问题方面几乎是最佳的(通过我们显示的算法独立的下限)。经验结果支持现有方法的理论增益。
translated by 谷歌翻译
近期在应用于培训深度神经网络和数据分析中的其他优化问题中的非凸优化的优化算法的兴趣增加,我们概述了最近对非凸优化优化算法的全球性能保证的理论结果。我们从古典参数开始,显示一般非凸面问题无法在合理的时间内有效地解决。然后,我们提供了一个问题列表,可以通过利用问题的结构来有效地找到全球最小化器,因为可能的问题。处理非凸性的另一种方法是放宽目标,从找到全局最小,以找到静止点或局部最小值。对于该设置,我们首先为确定性一阶方法的收敛速率提出了已知结果,然后是最佳随机和随机梯度方案的一般理论分析,以及随机第一阶方法的概述。之后,我们讨论了非常一般的非凸面问题,例如最小化$ \ alpha $ -weakly-are-convex功能和满足Polyak-lojasiewicz条件的功能,这仍然允许获得一阶的理论融合保证方法。然后,我们考虑更高阶和零序/衍生物的方法及其收敛速率,以获得非凸优化问题。
translated by 谷歌翻译
受到Mishchenko等人(2022)的最新突破的启发,他们首次表明局部梯度步骤可以导致可证明的通信加速,我们提出了一种替代算法,该算法获得了与他们的方法相同的通信加速度(Proxsskip)。但是,我们的方法非常不同:它基于Chambolle和Pock(2011)的著名方法,并具有多种不平凡的修改:i)我们允许通过适当的强烈凸出功能的代理操作员进行不精确的计算。基于梯度的方法(例如,GD,Fast GD或FSFOM),ii)我们对双重更新步骤进行仔细的修改,以保留线性收敛。我们的一般结果为强凸孔座鞍点问题提供了新的最先进率,其双线性耦合为特征,其特征是双重功能缺乏平滑度。当应用于联邦学习时,我们获得了Proxskip的理论上更好的替代方案:我们的方法需要更少的本地步骤($ O(\ kappa^{1/3})$或$ o(\ kappa^{1/4})$,与Proxskip的$ O(\ kappa^{1/2})$相比,并执行确定性的本地步骤。像Proxskip一样,我们的方法可以应用于连接网络的优化,我们在这里也获得了理论改进。
translated by 谷歌翻译
本文研究了缺乏值得信赖的服务器/客户的联邦学习(FL)的问题。在此设置中,每个客户端都需要确保其自身数据的隐私,而无需依赖服务器或其他客户端。我们研究了本地差异隐私(LDP)并提供紧密的上限和下限,可以为LDP凸起/强凸的联合随机优化建立最小的最佳速率(最多ogarithms)。我们的利率与某些实际参数制度(免费私隐)相匹配最佳统计率)。其次,我们开发了一种新型时变嘈杂的SGD算法,导致与非I.I.D的第一个非普通LDP风险限制。客户。第三,我们考虑每个客户端损失功能的特殊情况,其中每个客户端的损失函数是与现有工程相比改善通信复杂性的加速的LDP流。我们还提供匹配的下限,建立凸/强凸设置算法的最优性。第四,使用安全的Shuffler匿名客户报告(但没有可信服务器),我们的算法达到了随机凸/强凸优化的最佳中央DP速率,从而同时在局部和中心模型中实现最优性。我们的上限量量化了网络通信可靠性在性能中的作用。
translated by 谷歌翻译
加速的近端算法(APPA),也称为“催化剂”,是从凸优化到近似近端计算(即正则最小化)的确定还原。这种减少在概念上是优雅的,可以保证强大的收敛速度。但是,这些速率具有多余的对数项,因此需要计算每个近端点至高精度。在这项工作中,我们提出了一个新颖的放松误差标准,用于加速近端点(recapp),以消除对高精度子问题解决方案的需求。我们将recapp应用于两个规范问题:有限的和最大结构的最小化。对于有限和问题,我们匹配了以前通过精心设计的问题特异性算法获得的最著名的复杂性。为了最大程度地减少$ \ max_y f(x,y)$,其中$ f $以$ x $为$ x $,而在$ y $中强烈concave,我们改进了受对数因素限制的最著名的(基于催化剂)。
translated by 谷歌翻译
FEDPROX算法是一种简单但功能强大的分布式近端优化方法,广泛用于联合学习(FL)而不是异质数据。尽管在实践中看到了它的知名度和杰出的成功,但对FEDPROX的理论理解在很大程度上是不足的:FedProx的吸引人的融合行为迄今在某些非标准和不切实际的地方功能的差异假设下的特征是,结果的优化仅限于优化的限制。问题。为了解决这些缺陷,我们通过算法稳定性的镜头开发了FedProx及其Minibatch随机扩展的新型局部差异不变理论。结果,我们有助于得出对FedProx的几个新的和更深入的见解,以实现联合优化的非凸面,包括:1)收敛确保独立于局部差异类型条件; 2)融合保证非平滑FL问题; 3)关于Minibatch的尺寸和采样设备的数量,线性加速。我们的理论首次揭示了局部差异和平稳性对于FedProx获得有利的复杂性界限并不是必备的。据报道,一系列基准FL数据集的初步实验结果证明了小型匹配以提高FEDPROX的样品效率的好处。
translated by 谷歌翻译
Federated learning is a distributed framework according to which a model is trained over a set of devices, while keeping data localized. This framework faces several systemsoriented challenges which include (i) communication bottleneck since a large number of devices upload their local updates to a parameter server, and (ii) scalability as the federated network consists of millions of devices. Due to these systems challenges as well as issues related to statistical heterogeneity of data and privacy concerns, designing a provably efficient federated learning method is of significant importance yet it remains challenging. In this paper, we present FedPAQ, a communication-efficient Federated Learning method with Periodic Averaging and Quantization. FedPAQ relies on three key features: (1) periodic averaging where models are updated locally at devices and only periodically averaged at the server; (2) partial device participation where only a fraction of devices participate in each round of the training; and (3) quantized messagepassing where the edge nodes quantize their updates before uploading to the parameter server. These features address the communications and scalability challenges in federated learning. We also show that FedPAQ achieves near-optimal theoretical guarantees for strongly convex and non-convex loss functions and empirically demonstrate the communication-computation tradeoff provided by our method.
translated by 谷歌翻译
沟通是大规模机器学习模型的分布式培训中的关键瓶颈之一,而交换信息(例如随机梯度或模型)的有损压缩是减轻此问题的最有效工具之一。研究最多的压缩技术之一是无偏压缩操作员的类别,其方差为我们希望压缩的向量的平方规范的倍数界定。根据设计,该方差可能保持较高,并且只有在输入向量接近零时才会减少。但是,除非被训练的模型过度参数化,否则我们希望在经典方法的迭代(例如分布式压缩{\ sf sgd}的迭代术中,我们希望压缩的矢量有A的理由,对收敛产生不利影响速度。由于这个问题,最近提出了一些更详尽且看似截然不同的算法,目的是规避了这个问题。这些方法基于在我们通常希望压缩的向量和一些辅助向量之间压缩{\ em差异}的想法,这些辅助向量会在整个迭代过程中变化。在这项工作中,我们退后一步,并在概念上和理论上开发了研究此类方法的统一框架。我们的框架结合了使用无偏和有偏的压缩机压缩梯度和模型的方法,并阐明了辅助向量的构造。此外,我们的一般框架可以改善几种现有算法,并可以产生新的算法。最后,我们进行了几个数字实验,以说明和支持我们的理论发现。
translated by 谷歌翻译
We provide a new analysis of local SGD, removing unnecessary assumptions and elaborating on the difference between two data regimes: identical and heterogeneous. In both cases, we improve the existing theory and provide values of the optimal stepsize and optimal number of local iterations. Our bounds are based on a new notion of variance that is specific to local SGD methods with different data. The tightness of our results is guaranteed by recovering known statements when we plug H " 1, where H is the number of local steps. The empirical evidence further validates the severe impact of data heterogeneity on the performance of local SGD.
translated by 谷歌翻译
标准联合优化方法成功地适用于单层结构的随机问题。然而,许多当代的ML问题 - 包括对抗性鲁棒性,超参数调整和参与者 - 批判性 - 属于嵌套的双层编程,这些编程包含微型型和组成优化。在这项工作中,我们提出了\ fedblo:一种联合交替的随机梯度方法来解决一般的嵌套问题。我们在存在异质数据的情况下为\ fedblo建立了可证明的收敛速率,并引入了二聚体,最小值和组成优化的变化。\ fedblo引入了多种创新,包括联邦高级计算和降低方差,以解决内部级别的异质性。我们通过有关超参数\&超代理学习和最小值优化的实验来补充我们的理论,以证明我们方法在实践中的好处。代码可在https://github.com/ucr-optml/fednest上找到。
translated by 谷歌翻译
我们考虑光滑的凸孔concave双线性耦合的鞍点问题,$ \ min _ {\ mathbf {x}}} \ max _ {\ mathbf {y Mathbf {y}} 〜f(\ mathbf {x}} },\ mathbf {y}) - g(\ mathbf {y})$,其中一个人可以访问$ f $,$ g $的随机一阶oracles以及biinear耦合函数$ h $。基于标准的随机外部分析,我们提出了随机\ emph {加速梯度 - extragradient(ag-eg)}下降的算法,该算法在一般随机设置中结合了外部和Nesterov的加速度。该算法利用计划重新启动以接收一种良好的非震动收敛速率,该算法与\ citet {ibrahim202020linear}和\ citet {zhang2021lower}相匹配,并在其相应的设置中,还有一个额外的统计误差期限,以及\ citet {zhang2021lower}最多达到恒定的预取子。这是在鞍点优化中实现这种相对成熟的最佳表征的第一个结果。
translated by 谷歌翻译
In this book chapter, we briefly describe the main components that constitute the gradient descent method and its accelerated and stochastic variants. We aim at explaining these components from a mathematical point of view, including theoretical and practical aspects, but at an elementary level. We will focus on basic variants of the gradient descent method and then extend our view to recent variants, especially variance-reduced stochastic gradient schemes (SGD). Our approach relies on revealing the structures presented inside the problem and the assumptions imposed on the objective function. Our convergence analysis unifies several known results and relies on a general, but elementary recursive expression. We have illustrated this analysis on several common schemes.
translated by 谷歌翻译
数据异构联合学习(FL)系统遭受了两个重要的收敛误差来源:1)客户漂移错误是由于在客户端执行多个局部优化步骤而引起的,以及2)部分客户参与错误,这是一个事实,仅一小部分子集边缘客户参加每轮培训。我们发现其中,只有前者在文献中受到了极大的关注。为了解决这个问题,我们提出了FedVarp,这是在服务器上应用的一种新颖的差异算法,它消除了由于部分客户参与而导致的错误。为此,服务器只是将每个客户端的最新更新保持在内存中,并将其用作每回合中非参与客户的替代更新。此外,为了减轻服务器上的内存需求,我们提出了一种新颖的基于聚类的方差降低算法clusterfedvarp。与以前提出的方法不同,FedVarp和ClusterFedVarp均不需要在客户端上进行其他计算或其他优化参数的通信。通过广泛的实验,我们表明FedVarp优于最先进的方法,而ClusterFedVarp实现了与FedVarp相当的性能,并且记忆要求较少。
translated by 谷歌翻译
众所周知,客户师沟通可能是联邦学习中的主要瓶颈。在这项工作中,我们通过一种新颖的客户端采样方案解决了这个问题,我们将允许的客户数量限制为将其更新传达给主节点的数量。在每个通信回合中,所有参与的客户都会计算他们的更新,但只有具有“重要”更新的客户可以与主人通信。我们表明,可以仅使用更新的规范来衡量重要性,并提供一个公式以最佳客户参与。此公式将所有客户参与的完整更新与我们有限的更新(参与客户数量受到限制)之间的距离最小化。此外,我们提供了一种简单的算法,该算法近似于客户参与的最佳公式,该公式仅需要安全的聚合,因此不会损害客户的隐私。我们在理论上和经验上都表明,对于分布式SGD(DSGD)和联合平均(FedAvg),我们的方法的性能可以接近完全参与,并且优于基线,在参与客户均匀地采样的基线。此外,我们的方法与现有的减少通信开销(例如本地方法和通信压缩方法)的现有方法兼容。
translated by 谷歌翻译