联邦学习(FL)是一种越来越受欢迎的机器学习范式,其中多个节点在隐私,通信和多个异质性约束下尝试协同学习。联邦学习中的持续存在问题是,不清楚优化目标应该:监督学习的标准平均风险最小化在处理联合学习的几个主要限制方面是不充分的,例如沟通适应性和个性化控制。我们在联合学习的框架中识别几个关键的Desiderata,并介绍了一个新的框架,Flix,考虑到联合学习所带来的独特挑战。 Flix具有标准的有限和形式,使从业者能够利用分布式优化的现有(潜在非本地)方法的巨大财富。通过不需要任何通信的智能初始化,Flix不需要使用本地步骤,但仍然可以通过本地方法执行不一致的正则化。我们提供了几种用于在通信约束下有效解决FLIX制剂的算法。最后,我们通过广泛的实验证实了我们的理论结果。
translated by 谷歌翻译
联合学习(FL)是机器学习的一个子领域,在该子机学习中,多个客户试图在通信约束下通过网络进行协作学习模型。我们考虑在二阶功能相似性条件和强凸度下联合优化的有限和联合优化,并提出了两种新算法:SVRP和催化的SVRP。这种二阶相似性条件最近越来越流行,并且在包括分布式统计学习和差异性经验风险最小化在内的许多应用中得到满足。第一种算法SVRP结合了近似随机点评估,客户采样和降低方差。我们表明,当功能相似性足够高时,SVRP是沟通有效的,并且在许多现有算法上取得了卓越的性能。我们的第二个算法,催化的SVRP,是SVRP的催化剂加速变体,在二阶相似性和强凸度下,现有的联合优化算法可实现更好的性能,并均匀地改善了现有的算法。在分析这些算法的过程中,我们提供了可能具有独立关注的随机近端方法(SPPM)的新分析。我们对SPPM的分析很简单,允许进行近似近端评估,不需要任何平滑度假设,并且在通信复杂性上比普通分布式随机梯度下降显示出明显的好处。
translated by 谷歌翻译
梯度压缩是一种流行的技术,可改善机器学习模型分布式培训中随机一阶方法的沟通复杂性。但是,现有作品仅考虑随机梯度的替换采样。相比之下,在实践中众所周知,最近从理论上证实,基于没有替代抽样的随机方法,例如随机改组方法(RR)方法,其性能要比用更换梯度进行梯度的方法更好。在这项工作中,我们在文献中缩小了这一差距,并通过梯度压缩和没有替代抽样的方法提供了第一次分析方法。我们首先使用梯度压缩(Q-RR)开发一个随机重新填充的分布式变体,并展示如何通过使用控制迭代来减少梯度量化的方差。接下来,为了更好地适合联合学习应用程序,我们结合了本地计算,并提出了一种称为Q-Nastya的Q-RR的变体。 Q-Nastya使用本地梯度步骤以及不同的本地和全球步骤。接下来,我们还展示了如何在此设置中减少压缩差异。最后,我们证明了所提出的方法的收敛结果,并概述了它们在现有算法上改进的几种设置。
translated by 谷歌翻译
从经验上证明,在跨客户聚集之前应用多个本地更新的实践是克服联合学习(FL)中的通信瓶颈的成功方法。在这项工作中,我们提出了一种通用食谱,即FedShuffle,可以更好地利用FL中的本地更新,尤其是在异质性方面。与许多先前的作品不同,FedShuffle在每个设备的更新数量上没有任何统一性。我们的FedShuffle食谱包括四种简单的功能成分:1)数据的本地改组,2)调整本地学习率,3)更新加权,4)减少动量方差(Cutkosky and Orabona,2019年)。我们对FedShuffle进行了全面的理论分析,并表明从理论和经验上讲,我们的方法都不遭受FL方法中存在的目标功能不匹配的障碍,这些方法假设在异质FL设置中,例如FedAvg(McMahan等人,McMahan等, 2017)。此外,通过将上面的成分结合起来,FedShuffle在Fednova上改善(Wang等,2020),以前提议解决此不匹配。我们还表明,在Hessian相似性假设下,通过降低动量方差的FedShuffle可以改善非本地方法。最后,通过对合成和现实世界数据集的实验,我们说明了FedShuffle中使用的四种成分中的每种如何有助于改善FL中局部更新的使用。
translated by 谷歌翻译
与训练数据中心的训练传统机器学习(ML)模型相反,联合学习(FL)训练ML模型,这些模型在资源受限的异质边缘设备上包含的本地数据集上。现有的FL算法旨在为所有参与的设备学习一个单一的全球模型,这对于所有参与培训的设备可能没有帮助,这是由于整个设备的数据的异质性。最近,Hanzely和Richt \'{A} Rik(2020)提出了一种新的配方,以培训个性化的FL模型,旨在平衡传统的全球模型与本地模型之间的权衡,该模型可以使用其私人数据对单个设备进行培训只要。他们得出了一种称为无环梯度下降(L2GD)的新算法,以解决该算法,并表明该算法会在需要更多个性化的情况下,可以改善沟通复杂性。在本文中,我们为其L2GD算法配备了双向压缩机制,以进一步减少本地设备和服务器之间的通信瓶颈。与FL设置中使用的其他基于压缩的算法不同,我们的压缩L2GD算法在概率通信协议上运行,在概率通信协议中,通信不会按固定的时间表进行。此外,我们的压缩L2GD算法在没有压缩的情况下保持与香草SGD相似的收敛速率。为了验证算法的效率,我们在凸和非凸问题上都进行了多种数值实验,并使用各种压缩技术。
translated by 谷歌翻译
沟通是大规模机器学习模型的分布式培训中的关键瓶颈之一,而交换信息(例如随机梯度或模型)的有损压缩是减轻此问题的最有效工具之一。研究最多的压缩技术之一是无偏压缩操作员的类别,其方差为我们希望压缩的向量的平方规范的倍数界定。根据设计,该方差可能保持较高,并且只有在输入向量接近零时才会减少。但是,除非被训练的模型过度参数化,否则我们希望在经典方法的迭代(例如分布式压缩{\ sf sgd}的迭代术中,我们希望压缩的矢量有A的理由,对收敛产生不利影响速度。由于这个问题,最近提出了一些更详尽且看似截然不同的算法,目的是规避了这个问题。这些方法基于在我们通常希望压缩的向量和一些辅助向量之间压缩{\ em差异}的想法,这些辅助向量会在整个迭代过程中变化。在这项工作中,我们退后一步,并在概念上和理论上开发了研究此类方法的统一框架。我们的框架结合了使用无偏和有偏的压缩机压缩梯度和模型的方法,并阐明了辅助向量的构造。此外,我们的一般框架可以改善几种现有算法,并可以产生新的算法。最后,我们进行了几个数字实验,以说明和支持我们的理论发现。
translated by 谷歌翻译
We provide a new analysis of local SGD, removing unnecessary assumptions and elaborating on the difference between two data regimes: identical and heterogeneous. In both cases, we improve the existing theory and provide values of the optimal stepsize and optimal number of local iterations. Our bounds are based on a new notion of variance that is specific to local SGD methods with different data. The tightness of our results is guaranteed by recovering known statements when we plug H " 1, where H is the number of local steps. The empirical evidence further validates the severe impact of data heterogeneity on the performance of local SGD.
translated by 谷歌翻译
Federated learning (FL) is a decentralized and privacy-preserving machine learning technique in which a group of clients collaborate with a server to learn a global model without sharing clients' data. One challenge associated with FL is statistical diversity among clients, which restricts the global model from delivering good performance on each client's task. To address this, we propose an algorithm for personalized FL (pFedMe) using Moreau envelopes as clients' regularized loss functions, which help decouple personalized model optimization from the global model learning in a bi-level problem stylized for personalized FL. Theoretically, we show that pFedMe's convergence rate is state-of-the-art: achieving quadratic speedup for strongly convex and sublinear speedup of order 2/3 for smooth nonconvex objectives. Experimentally, we verify that pFedMe excels at empirical performance compared with the vanilla FedAvg and Per-FedAvg, a meta-learning based personalized FL algorithm.
translated by 谷歌翻译
我们展示了一个联合学习框架,旨在强大地提供具有异构数据的各个客户端的良好预测性能。所提出的方法对基于SuperQualile的学习目标铰接,捕获异构客户端的误差分布的尾统计。我们提出了一种随机训练算法,其与联合平均步骤交织差异私人客户重新重量步骤。该提出的算法支持有限时间收敛保证,保证覆盖凸和非凸面设置。关于联邦学习的基准数据集的实验结果表明,我们的方法在平均误差方面与古典误差竞争,并且在误差的尾统计方面优于它们。
translated by 谷歌翻译
本文研究了缺乏值得信赖的服务器/客户的联邦学习(FL)的问题。在此设置中,每个客户端都需要确保其自身数据的隐私,而无需依赖服务器或其他客户端。我们研究了本地差异隐私(LDP)并提供紧密的上限和下限,可以为LDP凸起/强凸的联合随机优化建立最小的最佳速率(最多ogarithms)。我们的利率与某些实际参数制度(免费私隐)相匹配最佳统计率)。其次,我们开发了一种新型时变嘈杂的SGD算法,导致与非I.I.D的第一个非普通LDP风险限制。客户。第三,我们考虑每个客户端损失功能的特殊情况,其中每个客户端的损失函数是与现有工程相比改善通信复杂性的加速的LDP流。我们还提供匹配的下限,建立凸/强凸设置算法的最优性。第四,使用安全的Shuffler匿名客户报告(但没有可信服务器),我们的算法达到了随机凸/强凸优化的最佳中央DP速率,从而同时在局部和中心模型中实现最优性。我们的上限量量化了网络通信可靠性在性能中的作用。
translated by 谷歌翻译
我们研究基于{\ em本地培训(LT)}范式的分布式优化方法:通过在参数平均之前对客户进行基于本地梯度的培训来实现沟通效率。回顾田地的进度,我们{\ em识别5代LT方法}:1)启发式,2)均匀,3)sublinear,4)线性和5)加速。由Mishchenko,Malinovsky,Stich和Richt \'{A} Rik(2022)发起的5 $ {}^{\ rm th} $生成,由Proxskip方法发起通信加速机制。受到最近进度的启发,我们通过证明可以使用{\ em差异}进一步增强它们,为5 $ {}^{\ rm th} $生成LT方法的生成。尽管LT方法的所有以前的所有理论结果都完全忽略了本地工作的成本,并且仅根据交流回合的数量而被构成,但我们证明我们的方法在{\ em总培训成本方面都比{\ em em总培训成本}大得多当本地计算足够昂贵时,在制度中的理论和实践中,最先进的方法是proxskip。我们从理论上表征了这个阈值,并通过经验结果证实了我们的理论预测。
translated by 谷歌翻译
我们介绍了一个框架 - Artemis-,以解决分布式或联合设置中的学习问题,并具有通信约束和设备部分参与。几位工人(随机抽样)使用中央服务器执行优化过程来汇总其计算。为了减轻通信成本,Artemis允许在两个方向上(从工人到服务器,相反)将发送的信息与内存机制相结合。它改进了仅考虑单向压缩(对服务器)的现有算法,或在压缩操作员上使用非常强大的假设,并且通常不考虑设备的部分参与。我们在非I.I.D中的随机梯度(仅在最佳点界定的噪声方差)提供了快速的收敛速率(线性最高到阈值)。设置,突出显示内存对单向和双向压缩的影响,分析Polyak-Ruppert平均。我们在分布中使用收敛性,以获得渐近方差的下限,该方差突出了实际的压缩极限。我们提出了两种方法,以解决设备部分参与的具有挑战性的案例,并提供实验结果以证明我们的分析有效性。
translated by 谷歌翻译
Federated learning is a distributed framework according to which a model is trained over a set of devices, while keeping data localized. This framework faces several systemsoriented challenges which include (i) communication bottleneck since a large number of devices upload their local updates to a parameter server, and (ii) scalability as the federated network consists of millions of devices. Due to these systems challenges as well as issues related to statistical heterogeneity of data and privacy concerns, designing a provably efficient federated learning method is of significant importance yet it remains challenging. In this paper, we present FedPAQ, a communication-efficient Federated Learning method with Periodic Averaging and Quantization. FedPAQ relies on three key features: (1) periodic averaging where models are updated locally at devices and only periodically averaged at the server; (2) partial device participation where only a fraction of devices participate in each round of the training; and (3) quantized messagepassing where the edge nodes quantize their updates before uploading to the parameter server. These features address the communications and scalability challenges in federated learning. We also show that FedPAQ achieves near-optimal theoretical guarantees for strongly convex and non-convex loss functions and empirically demonstrate the communication-computation tradeoff provided by our method.
translated by 谷歌翻译
Federated Averaging (FEDAVG) has emerged as the algorithm of choice for federated learning due to its simplicity and low communication cost. However, in spite of recent research efforts, its performance is not fully understood. We obtain tight convergence rates for FEDAVG and prove that it suffers from 'client-drift' when the data is heterogeneous (non-iid), resulting in unstable and slow convergence.As a solution, we propose a new algorithm (SCAFFOLD) which uses control variates (variance reduction) to correct for the 'client-drift' in its local updates. We prove that SCAFFOLD requires significantly fewer communication rounds and is not affected by data heterogeneity or client sampling. Further, we show that (for quadratics) SCAFFOLD can take advantage of similarity in the client's data yielding even faster convergence. The latter is the first result to quantify the usefulness of local-steps in distributed optimization.
translated by 谷歌翻译
我们开发了一种新方法来解决中央服务器中分布式学习问题中的通信约束。我们提出和分析了一种执行双向压缩的新算法,并仅使用uplink(从本地工人到中央服务器)压缩达到与算法相同的收敛速率。为了获得此改进,我们设计了MCM,一种算法,使下行链路压缩仅影响本地模型,而整体模型则保留。结果,与以前的工作相反,本地服务器上的梯度是在干扰模型上计算的。因此,融合证明更具挑战性,需要精确控制这种扰动。为了确保它,MCM还将模型压缩与存储机制相结合。该分析打开了新的门,例如纳入依赖工人的随机模型和部分参与。
translated by 谷歌翻译
在分布式和联合学习中实现全球融合的主要障碍是由于分布式数据的异质性和随机性的客户端跨越梯度的未对准。在这项工作中,我们表明,实际上可以利用数据异质性来通过隐式正规化提高泛化性能。缓解异质性影响的一种方法是在整个训练中鼓励在不同客户端中的渐变对齐。我们的分析表明,通过利用复制SGD的隐式正则化效果的正确优化方法可以实现这一目标,从而导致梯度对准以及测试精度的改进。由于SGD中该正则化的存在完全依赖于在训练期间的不同迷你批次的顺序使用,因此在用大型批次进行训练时固有地没有。为了在增加并行性的同时获得该正则化的泛化效益,我们提出了一种新的渐变算法,其诱导相同的隐式正则化,同时允许在每个更新中使用任意大的批次。我们通过在不同分布式和联合学习设置中实验验证我们算法的优势。
translated by 谷歌翻译
使用多个计算节点通常可以加速在大型数据集上的深度神经网络。这种方法称为分布式训练,可以通过专门的消息传递协议,例如环形全部减少。但是,以比例运行这些协议需要可靠的高速网络,其仅在专用集群中可用。相比之下,许多现实世界应用程序,例如联合学习和基于云的分布式训练,在具有不稳定的网络带宽的不可靠的设备上运行。因此,这些应用程序仅限于使用参数服务器或基于Gossip的平均协议。在这项工作中,我们通过提出MOSHPIT全部减少的迭代平均协议来提升该限制,该协议指数地收敛于全局平均值。我们展示了我们对具有强烈理论保证的分布式优化方案的效率。该实验显示了与使用抢占从头开始训练的竞争性八卦的策略和1.5倍的加速,显示了1.3倍的Imagenet培训的加速。
translated by 谷歌翻译
我们研究了在$ n $工人上的分布式培训的异步随机梯度下降算法,随着时间的推移,计算和通信频率变化。在此算法中,工人按照自己的步调并行计算随机梯度,并在没有任何同步的情况下将其返回服务器。该算法的现有收敛速率对于非凸平的光滑目标取决于最大梯度延迟$ \ tau _ {\ max} $,并表明$ \ epsilon $ stationary点在$ \ mathcal {o} \!\左后达到(\ sigma^2 \ epsilon^{ - 2}+ \ tau _ {\ max} \ epsilon^{ - 1} \ right)$ iterations,其中$ \ sigma $表示随机梯度的方差。在这项工作(i)中,我们获得了$ \ Mathcal {o} \!\ left(\ sigma^2 \ epsilon^{ - 2}+ sqrt {\ tau _ {\ max} \ max} \ tau_ {avg} {avg} } \ epsilon^{ - 1} \ right)$,没有任何更改的算法,其中$ \ tau_ {avg} $是平均延迟,可以大大小于$ \ tau _ {\ max} $。我们还提供(ii)一个简单的延迟自适应学习率方案,在该方案下,异步SGD的收敛速率为$ \ Mathcal {o} \!\ left(\ sigma^2 \ epsilon^{ - 2} { - 2}+ \ tau_ {-2 avg} \ epsilon^{ - 1} \ right)$,并且不需要任何额外的高参数调整或额外的通信。我们的结果首次显示异步SGD总是比迷你批次SGD快。此外,(iii)我们考虑了由联邦学习应用激发的异质功能的情况,并通过证明与先前的作品相比对最大延迟的依赖性较弱,并提高收敛率。特别是,我们表明,收敛率的异质性项仅受每个工人内平均延迟的影响。
translated by 谷歌翻译
The increasing size of data generated by smartphones and IoT devices motivated the development of Federated Learning (FL), a framework for on-device collaborative training of machine learning models. First efforts in FL focused on learning a single global model with good average performance across clients, but the global model may be arbitrarily bad for a given client, due to the inherent heterogeneity of local data distributions. Federated multi-task learning (MTL) approaches can learn personalized models by formulating an opportune penalized optimization problem. The penalization term can capture complex relations among personalized models, but eschews clear statistical assumptions about local data distributions. In this work, we propose to study federated MTL under the flexible assumption that each local data distribution is a mixture of unknown underlying distributions. This assumption encompasses most of the existing personalized FL approaches and leads to federated EM-like algorithms for both client-server and fully decentralized settings. Moreover, it provides a principled way to serve personalized models to clients not seen at training time. The algorithms' convergence is analyzed through a novel federated surrogate optimization framework, which can be of general interest. Experimental results on FL benchmarks show that our approach provides models with higher accuracy and fairness than state-of-the-art methods.
translated by 谷歌翻译
在过去的几年中,各种通信压缩技术已经出现为一个不可或缺的工具,有助于缓解分布式学习中的通信瓶颈。然而,尽管{\ em偏见}压缩机经常在实践中显示出卓越的性能,但与更多的研究和理解的{\ EM无偏见}压缩机相比,非常少见。在这项工作中,我们研究了三类偏置压缩操作员,其中两个是新的,并且它们在施加到(随机)梯度下降和分布(随机)梯度下降时的性能。我们首次展示偏置压缩机可以在单个节点和分布式设置中导致线性收敛速率。我们证明了具有错误反馈机制的分布式压缩SGD方法,享受ergodic速率$ \ mathcal {o} \ left(\ delta l \ exp [ - \ frac {\ mu k} {\ delta l}] + \ frac {(c + \ delta d)} {k \ mu} \右)$,其中$ \ delta \ ge1 $是一个压缩参数,它在应用更多压缩时增长,$ l $和$ \ mu $是平滑性和强凸常数,$ C $捕获随机渐变噪声(如果在每个节点上计算完整渐变,则$ C = 0 $如果在每个节点上计算),则$ D $以最佳($ d = 0 $ for over参数化模型)捕获渐变的方差)。此外,通过对若干合成和经验的通信梯度分布的理论研究,我们阐明了为什么和通过多少偏置压缩机优于其无偏的变体。最后,我们提出了几种具有有希望理论担保和实际表现的新型偏置压缩机。
translated by 谷歌翻译