我们考虑光滑的凸孔concave双线性耦合的鞍点问题,$ \ min _ {\ mathbf {x}}} \ max _ {\ mathbf {y Mathbf {y}} 〜f(\ mathbf {x}} },\ mathbf {y}) - g(\ mathbf {y})$,其中一个人可以访问$ f $,$ g $的随机一阶oracles以及biinear耦合函数$ h $。基于标准的随机外部分析,我们提出了随机\ emph {加速梯度 - extragradient(ag-eg)}下降的算法,该算法在一般随机设置中结合了外部和Nesterov的加速度。该算法利用计划重新启动以接收一种良好的非震动收敛速率,该算法与\ citet {ibrahim202020linear}和\ citet {zhang2021lower}相匹配,并在其相应的设置中,还有一个额外的统计误差期限,以及\ citet {zhang2021lower}最多达到恒定的预取子。这是在鞍点优化中实现这种相对成熟的最佳表征的第一个结果。
translated by 谷歌翻译
我们研究了随机双线性最小利益的优化问题,呈现了恒定步长的相同样本随机以(SEG)方法的分析,并呈现了产生有利收敛的方法的变化。在锐度对比度与基本的SEG方法相比,其最后迭代仅对纳什均衡的固定邻域,SEG以相同的标准设置在相同的标准设置下可被提供给NASH均衡的迭代,并且通过结合预定,进一步提高了这种速率重新启动程序。在插值环境中,噪声在纳什均衡消失时,我们达到了最佳的常量收敛速度。我们展示了验证我们理论发现的数值实验,并在配备迭代平均和重启时证明SEG方法的有效性。
translated by 谷歌翻译
我们考虑非凸凹minimax问题,$ \ min _ {\ mathbf {x}} \ mathcal {y}} f(\ mathbf {x},\ mathbf {y})$, $ f $在$ \ mathbf {x} $ on $ \ mathbf {y} $和$ \ mathcal {y} $中的$ \ \ mathbf {y} $。解决此问题的最受欢迎的算法之一是庆祝的梯度下降上升(GDA)算法,已广泛用于机器学习,控制理论和经济学。尽管凸凹设置的广泛收敛结果,但具有相等步骤的GDA可以收敛以限制循环甚至在一般设置中发散。在本文中,我们介绍了两次尺度GDA的复杂性结果,以解决非膨胀凹入的最小问题,表明该算法可以找到函数$ \ phi(\ cdot)的静止点:= \ max _ {\ mathbf {Y} \ In \ Mathcal {Y}} F(\ CDOT,\ MATHBF {Y})高效。据我们所知,这是对这一环境中的两次尺度GDA的第一个非因对药分析,阐明了其在培训生成对抗网络(GANS)和其他实际应用中的优越实际表现。
translated by 谷歌翻译
用于解决无约束光滑游戏的两个最突出的算法是经典随机梯度下降 - 上升(SGDA)和最近引入的随机共识优化(SCO)[Mescheder等,2017]。已知SGDA可以收敛到特定类别的游戏的静止点,但是当前的收敛分析需要有界方差假设。 SCO用于解决大规模对抗问题,但其收敛保证仅限于其确定性变体。在这项工作中,我们介绍了预期的共同胁迫条件,解释了它的好处,并在这种情况下提供了SGDA和SCO的第一次迭代收敛保证,以解决可能是非单调的一类随机变分不等式问题。我们将两种方法的线性会聚到解决方案的邻域时,当它们使用恒定的步长时,我们提出了富有识别的步骤化切换规则,以保证对确切解决方案的融合。此外,我们的收敛保证在任意抽样范式下担保,因此,我们对迷你匹配的复杂性进行了解。
translated by 谷歌翻译
We study stochastic monotone inclusion problems, which widely appear in machine learning applications, including robust regression and adversarial learning. We propose novel variants of stochastic Halpern iteration with recursive variance reduction. In the cocoercive -- and more generally Lipschitz-monotone -- setup, our algorithm attains $\epsilon$ norm of the operator with $\mathcal{O}(\frac{1}{\epsilon^3})$ stochastic operator evaluations, which significantly improves over state of the art $\mathcal{O}(\frac{1}{\epsilon^4})$ stochastic operator evaluations required for existing monotone inclusion solvers applied to the same problem classes. We further show how to couple one of the proposed variants of stochastic Halpern iteration with a scheduled restart scheme to solve stochastic monotone inclusion problems with ${\mathcal{O}}(\frac{\log(1/\epsilon)}{\epsilon^2})$ stochastic operator evaluations under additional sharpness or strong monotonicity assumptions.
translated by 谷歌翻译
从最佳运输到稳健的维度降低,可以将大量的机器学习应用程序放入Riemannian歧管上的Min-Max优化问题中。尽管在欧几里得的环境中已经分析了许多最小的最大算法,但事实证明,将这些结果转化为Riemannian案例已被证明是难以捉摸的。张等。 [2022]最近表明,测量凸凹入的凹入问题总是容纳鞍点解决方案。受此结果的启发,我们研究了Riemannian和最佳欧几里得空间凸入concove算法之间的性能差距。我们在负面的情况下回答了这个问题,证明Riemannian校正的外部(RCEG)方法在地球上强烈convex-concove案例中以线性速率实现了最后近期收敛,与欧几里得结果匹配。我们的结果还扩展到随机或非平滑案例,在这种情况下,RCEG和Riemanian梯度上升下降(RGDA)达到了近乎最佳的收敛速率,直到因歧管的曲率而定为因素。
translated by 谷歌翻译
梯度下降上升(GDA),最简单的单环路算法用于非凸起最小化优化,广泛用于实际应用,例如生成的对抗网络(GANS)和对抗性训练。尽管其理想的简单性,最近的工作表明了理论上的GDA的较差收敛率,即使在一侧对象的强凹面也是如此。本文为两个替代的单环算法建立了新的收敛结果 - 交替GDA和平滑GDA - 在温和的假设下,目标对一个变量的polyak-lojasiewicz(pl)条件满足Polyak-lojasiewicz(pl)条件。我们证明,找到一个$ \ epsilon $ -stationary点,(i)交替的GDA及其随机变体(没有迷你批量),分别需要$ o(\ kappa ^ {2} \ epsilon ^ { - 2})$和$ o(\ kappa ^ {4} \ epsilon ^ {-4})$迭代,而(ii)平滑gda及其随机变体(没有迷你批次)分别需要$ o(\ kappa \ epsilon ^ { - 2}) $和$ o(\ kappa ^ {2} \ epsilon ^ { - 4})$迭代。后者大大改善了Vanilla GDA,并在类似的环境下给出了单环算法之间的最佳已知复杂性结果。我们进一步展示了这些算法在训练GAN和强大的非线性回归中的经验效率。
translated by 谷歌翻译
在这项工作中,我们旨在研究用于凸出的凸侧鞍点问题(SPP)的原始偶(PD)方法。在许多情况下,仅原始函数上近端甲骨文的计算效率低下。因此,我们在近端步骤中使用其一阶线性近似,从而导致线性化PD(LPD)方法。即使耦合项为双线性,我们也会观察到LPD对原始功能的Lipschitz常数具有次优的依赖性。相比之下,LPD对于强凸凹形病例具有最佳的收敛性。该观察结果导致我们提出了加速的线性化原始偶(ALPD)算法,以求解强烈的凸面spp。 ALPD是一种单环算法,结合了Nesterov加速梯度下降(AGD)和LPD的特征。我们表明,当耦合项为半线性(包含双线性作为特定情况)时,ALPD获得了对原始功能的Lipschitz常数的最佳依赖性。因此,它是一种最佳算法。当耦合项具有一般的非线性形式时,ALPD算法对耦合项原始部分的Lipschitz常数具有次优依赖性。为了提高这种依赖性,我们提出了一种不精确的APD算法。该算法在内部循环中执行AGD迭代,以找到对APD近端子问题的近似解决方案。我们表明,不精确的APD保持了问题的原始和双重部分的最佳梯度评​​估(梯度复杂性)。它还显着改善了原始耦合项的梯度复杂性。
translated by 谷歌翻译
随机以外的(SEG)方法是解决各种机器学习任务中出现的最小最大优化和变分不等式问题(VIP)的最流行算法之一。然而,有关SEG的收敛性质的几个重要问题仍然是开放的,包括随机梯度的采样,迷你批量,用于单调有限和变分不等式的单调有限和变分别不等式,以及其他问题。为了解决这些问题,在本文中,我们开发了一种新颖的理论框架,使我们能够以统一的方式分析赛季的几种变体。除了标准设置之外,与均有界差异下的LipsChitzness和单调性或独立样本SEG相同 - 样本SEG,我们的方法可以分析之前从未明确考虑过的SEG的变体。值得注意的是,我们用任意抽样分析SEG,其中包括重要性采样和各种批量批量策略作为特殊情况。我们为SEG的新变种的率优于目前最先进的融合保证并依赖于更少的限制性假设。
translated by 谷歌翻译
最近,由于这些问题与一些新兴应用的相关性,最近有许多研究工作用于开发有效算法,以解决理论收敛的保证。在本文中,我们提出了一种统一的单环交替梯度投影(AGP)算法,用于求解平滑的非convex-(强烈)凹面和(强烈)凸出 - 非concave minimax问题。 AGP采用简单的梯度投影步骤来更新每次迭代时的原始变量和双变量。我们表明,它可以在$ \ MATHCAL {O} \ left(\ Varepsilon ^{ - 2} \ right)$(rep. $ \ Mathcal {O} \ left)中找到目标函数的$ \ VAREPSILON $ -STAIMATARY点。 (\ varepsilon ^{ - 4} \ right)$)$迭代,在nonconvex-strongly凹面(resp。nonconvex-concave)设置下。此外,获得目标函数的$ \ VAREPSILON $ -STAIMATARY的梯度复杂性由$ \ Mathcal {o} \ left(\ varepsilon ^{ - 2} \ right)界限O} \ left(\ varepsilon ^{ - 4} \ right)$在强烈的convex-nonconcave(resp。,convex-nonconcave)设置下。据我们所知,这是第一次开发出一种简单而统一的单环算法来解决非convex-(强烈)凹面和(强烈)凸出 - 非concave minimax问题。此外,在文献中从未获得过解决后者(强烈)凸线 - 非孔孔的最小问题的复杂性结果。数值结果表明所提出的AGP算法的效率。此外,我们通过提出块交替近端梯度(BAPG)算法来扩展AGP算法,以求解更通用的多块非块非conmooth nonmooth nonmooth noncovex-(强)凹面和(强烈)convex-nonconcave minimax问题。我们可以在这四个不同的设置下类似地建立所提出算法的梯度复杂性。
translated by 谷歌翻译
本文重点介绍了解决光滑非凸强凹入最小问题的随机方法,这导致了由于其深度学习中的潜在应用而受到越来越长的关注(例如,深度AUC最大化,分布鲁棒优化)。然而,大多数现有算法在实践中都很慢,并且它们的分析围绕到几乎静止点的收敛。我们考虑利用Polyak-\ L Ojasiewicz(PL)条件来设计更快的随机算法,具有更强的收敛保证。尽管已经用于设计许多随机最小化算法的PL条件,但它们对非凸敏最大优化的应用仍然罕见。在本文中,我们提出并分析了基于近端的跨越时代的方法的通用框架,许多众所周知的随机更新嵌入。以{\ BF原始物镜差和二元间隙}的方式建立快速收敛。与现有研究相比,(i)我们的分析基于一个新的Lyapunov函数,包括原始物理差距和正则化功能的二元间隙,(ii)结果更加全面,提高了更好的依赖性的速率不同假设下的条件号。我们还开展深层和非深度学习实验,以验证我们的方法的有效性。
translated by 谷歌翻译
我们提出了随机方差降低算法,以求解凸 - 凸座鞍点问题,单调变异不平等和单调夹杂物。我们的框架适用于Euclidean和Bregman设置中的外部,前向前后和前反向回复的方法。所有提出的方法都在与确定性的对应物相同的环境中收敛,并且它们要么匹配或改善了解决结构化的最低最大问题的最著名复杂性。我们的结果加强了变异不平等和最小化之间的差异之间的对应关系。我们还通过对矩阵游戏的数值评估来说明方法的改进。
translated by 谷歌翻译
在本文中,我们研究了一个凸凹马鞍点问题$ \ min_x \ max_y f(x)+ y ^ \ top \ mathbf {a} x - g(y)$,其中$ f(x)$和$ g(y)$是平滑和凸的功能。我们提出了一种加速的原始 - 双梯度方法,用于解决该问题(i)在匹配较低复杂性绑定的强 - 凸强 - 凹形方案中实现最佳线性收敛速率(Zhang等,2021)和(ii)在只有其中一个函数$ f(x)$和$ g(y)$的情况下实现加速的线性收敛速率,而甚至没有它们。最后,我们获得了一种线性收敛算法,用于一般平滑和凸凹骑马点问题$ \ min_x \ max_y f(x,y)$,不需要强大的凸起或强凹面。
translated by 谷歌翻译
通过在线规范相关性分析的问题,我们提出了\ emph {随机缩放梯度下降}(SSGD)算法,以最小化通用riemannian歧管上的随机功能的期望。 SSGD概括了投影随机梯度下降的思想,允许使用缩放的随机梯度而不是随机梯度。在特殊情况下,球形约束的特殊情况,在广义特征向量问题中产生的,我们建立了$ \ sqrt {1 / t} $的令人反感的有限样本,并表明该速率最佳最佳,直至具有积极的积极因素相关参数。在渐近方面,一种新的轨迹平均争论使我们能够实现局部渐近常态,其速率与鲁普特 - Polyak-Quaditsky平均的速率匹配。我们将这些想法携带在一个在线规范相关分析,从事文献中的第一次获得了最佳的一次性尺度算法,其具有局部渐近融合到正常性的最佳一次性尺度算法。还提供了用于合成数据的规范相关分析的数值研究。
translated by 谷歌翻译
本文分析了双模的彼此优化随机算法框架。 Bilevel优化是一类表现出两级结构的问题,其目标是使具有变量的外目标函数最小化,该变量被限制为对(内部)优化问题的最佳解决方案。我们考虑内部问题的情况是不受约束的并且强烈凸起的情况,而外部问题受到约束并具有平滑的目标函数。我们提出了一种用于解决如此偏纤维问题的两次时间尺度随机近似(TTSA)算法。在算法中,使用较大步长的随机梯度更新用于内部问题,而具有较小步长的投影随机梯度更新用于外部问题。我们在各种设置下分析了TTSA算法的收敛速率:当外部问题强烈凸起(RESP。〜弱凸)时,TTSA算法查找$ \ MATHCAL {O}(k ^ { - 2/3})$ -Optimal(resp。〜$ \ mathcal {o}(k ^ {-2/5})$ - 静止)解决方案,其中$ k $是总迭代号。作为一个应用程序,我们表明,两个时间尺度的自然演员 - 批评批评近端策略优化算法可以被视为我们的TTSA框架的特殊情况。重要的是,与全球最优政策相比,自然演员批评算法显示以预期折扣奖励的差距,以$ \ mathcal {o}(k ^ { - 1/4})的速率收敛。
translated by 谷歌翻译
We initiate a formal study of reproducibility in optimization. We define a quantitative measure of reproducibility of optimization procedures in the face of noisy or error-prone operations such as inexact or stochastic gradient computations or inexact initialization. We then analyze several convex optimization settings of interest such as smooth, non-smooth, and strongly-convex objective functions and establish tight bounds on the limits of reproducibility in each setting. Our analysis reveals a fundamental trade-off between computation and reproducibility: more computation is necessary (and sufficient) for better reproducibility.
translated by 谷歌翻译
加速的近端算法(APPA),也称为“催化剂”,是从凸优化到近似近端计算(即正则最小化)的确定还原。这种减少在概念上是优雅的,可以保证强大的收敛速度。但是,这些速率具有多余的对数项,因此需要计算每个近端点至高精度。在这项工作中,我们提出了一个新颖的放松误差标准,用于加速近端点(recapp),以消除对高精度子问题解决方案的需求。我们将recapp应用于两个规范问题:有限的和最大结构的最小化。对于有限和问题,我们匹配了以前通过精心设计的问题特异性算法获得的最著名的复杂性。为了最大程度地减少$ \ max_y f(x,y)$,其中$ f $以$ x $为$ x $,而在$ y $中强烈concave,我们改进了受对数因素限制的最著名的(基于催化剂)。
translated by 谷歌翻译
联合学习(FL)是机器学习的一个子领域,在该子机学习中,多个客户试图在通信约束下通过网络进行协作学习模型。我们考虑在二阶功能相似性条件和强凸度下联合优化的有限和联合优化,并提出了两种新算法:SVRP和催化的SVRP。这种二阶相似性条件最近越来越流行,并且在包括分布式统计学习和差异性经验风险最小化在内的许多应用中得到满足。第一种算法SVRP结合了近似随机点评估,客户采样和降低方差。我们表明,当功能相似性足够高时,SVRP是沟通有效的,并且在许多现有算法上取得了卓越的性能。我们的第二个算法,催化的SVRP,是SVRP的催化剂加速变体,在二阶相似性和强凸度下,现有的联合优化算法可实现更好的性能,并均匀地改善了现有的算法。在分析这些算法的过程中,我们提供了可能具有独立关注的随机近端方法(SPPM)的新分析。我们对SPPM的分析很简单,允许进行近似近端评估,不需要任何平滑度假设,并且在通信复杂性上比普通分布式随机梯度下降显示出明显的好处。
translated by 谷歌翻译
本文重点介绍了静态和时变设置中决策依赖性分布的随机鞍点问题。这些是目标是随机收益函数的预期值,其中随机变量从分布图引起的分布中绘制。对于一般分布地图,即使已知分布是已知的,发现鞍点的问题也是一般的计算繁琐。为了实现易求解的解决方案方法,我们介绍了均衡点的概念 - 这是它们诱导的静止随机最小值问题的马鞍点 - 并为其存在和唯一性提供条件。我们证明,两个类解决方案之间的距离被界定,条件是该目标具有强凸强 - 凹入的收益和Lipschitz连续分布图。我们开发确定性和随机的原始算法,并证明它们对均衡点的收敛性。特别是,通过将来自随机梯度估计器的出现的错误建模为子-Weibull随机变量,我们提供期望的错误界限,并且在每个迭代的高概率中提供的误差;此外,我们向期望和几乎肯定地显示给社区的融合。最后,我们调查了分布地图的条件 - 我们调用相反的混合优势 - 确保目标是强烈的凸强 - 凹陷的。在这种假设下,我们表明原始双算法以类似的方式汇集到鞍座点。
translated by 谷歌翻译
文献中随机梯度方法的绝大多数收敛速率分析集中在预期中的收敛性,而轨迹的几乎确定的收敛对于确保随机算法的任何实例化都会与概率相关。在这里,我们为随机梯度下降(SGD),随机重球(SHB)和随机Nesterov的加速梯度(SNAG)方法提供了几乎确定的收敛速率分析。我们首次显示,这些随机梯度方法在强凸功能上获得的几乎确定的收敛速率已任意接近其最佳收敛速率。对于非凸目标函数,我们不仅表明平方梯度规范的加权平均值几乎可以肯定地收敛到零,而且是算法的最后一次迭代。与文献中的大多数现有结果相反,我们进一步为弱凸平平滑功能的随机梯度方法提供了最后的几乎确定的收敛速率分析,而文献中的大多数现有结果仅提供了对迭代率的加权平均值的预期。
translated by 谷歌翻译