FEDPROX算法是一种简单但功能强大的分布式近端优化方法,广泛用于联合学习(FL)而不是异质数据。尽管在实践中看到了它的知名度和杰出的成功,但对FEDPROX的理论理解在很大程度上是不足的:FedProx的吸引人的融合行为迄今在某些非标准和不切实际的地方功能的差异假设下的特征是,结果的优化仅限于优化的限制。问题。为了解决这些缺陷,我们通过算法稳定性的镜头开发了FedProx及其Minibatch随机扩展的新型局部差异不变理论。结果,我们有助于得出对FedProx的几个新的和更深入的见解,以实现联合优化的非凸面,包括:1)收敛确保独立于局部差异类型条件; 2)融合保证非平滑FL问题; 3)关于Minibatch的尺寸和采样设备的数量,线性加速。我们的理论首次揭示了局部差异和平稳性对于FedProx获得有利的复杂性界限并不是必备的。据报道,一系列基准FL数据集的初步实验结果证明了小型匹配以提高FEDPROX的样品效率的好处。
translated by 谷歌翻译
Federated Learning is a distributed learning paradigm with two key challenges that differentiate it from traditional distributed optimization: (1) significant variability in terms of the systems characteristics on each device in the network (systems heterogeneity), and (2) non-identically distributed data across the network (statistical heterogeneity). In this work, we introduce a framework, FedProx, to tackle heterogeneity in federated networks. FedProx can be viewed as a generalization and re-parametrization of FedAvg, the current state-of-the-art method for federated learning. While this re-parameterization makes only minor modifications to the method itself, these modifications have important ramifications both in theory and in practice. Theoretically, we provide convergence guarantees for our framework when learning over data from non-identical distributions (statistical heterogeneity), and while adhering to device-level systems constraints by allowing each participating device to perform a variable amount of work (systems heterogeneity). Practically, we demonstrate that FedProx allows for more robust convergence than FedAvg across a suite of realistic federated datasets. In particular, in highly heterogeneous settings, FedProx demonstrates significantly more stable and accurate convergence behavior relative to FedAvg-improving absolute test accuracy by 22% on average.
translated by 谷歌翻译
最近已经建立了近似稳定的学习算法的指数概括范围。但是,统一稳定性的概念是严格的,因为它是数据生成分布不变的。在稳定性的较弱和分布依赖性的概念下,例如假设稳定性和$ L_2 $稳定性,文献表明,在一般情况下,只有多项式概括界限是可能的。本文解决了这两个结果方案之间的长期紧张关系,并在融合信心的经典框架内取得了进步。为此,我们首先建立了一个预测的第一刻,通用错误限制了具有$ l_2 $稳定性的潜在随机学习算法,然后我们证明了一个正确设计的subbagagging流程会导致几乎紧密的指数概括性限制在上面数据和算法的随机性。我们将这些通用结果进一步实质性地将随机梯度下降(SGD)实现,以提高凸或非凸优化的高概率概括性范围,而自然时间衰减的学习速率则可以通过现有的假设稳定性或均匀的假设稳定性来证明这一点。基于稳定的结果。
translated by 谷歌翻译
Federated learning is a distributed framework according to which a model is trained over a set of devices, while keeping data localized. This framework faces several systemsoriented challenges which include (i) communication bottleneck since a large number of devices upload their local updates to a parameter server, and (ii) scalability as the federated network consists of millions of devices. Due to these systems challenges as well as issues related to statistical heterogeneity of data and privacy concerns, designing a provably efficient federated learning method is of significant importance yet it remains challenging. In this paper, we present FedPAQ, a communication-efficient Federated Learning method with Periodic Averaging and Quantization. FedPAQ relies on three key features: (1) periodic averaging where models are updated locally at devices and only periodically averaged at the server; (2) partial device participation where only a fraction of devices participate in each round of the training; and (3) quantized messagepassing where the edge nodes quantize their updates before uploading to the parameter server. These features address the communications and scalability challenges in federated learning. We also show that FedPAQ achieves near-optimal theoretical guarantees for strongly convex and non-convex loss functions and empirically demonstrate the communication-computation tradeoff provided by our method.
translated by 谷歌翻译
我们展示了一个联合学习框架,旨在强大地提供具有异构数据的各个客户端的良好预测性能。所提出的方法对基于SuperQualile的学习目标铰接,捕获异构客户端的误差分布的尾统计。我们提出了一种随机训练算法,其与联合平均步骤交织差异私人客户重新重量步骤。该提出的算法支持有限时间收敛保证,保证覆盖凸和非凸面设置。关于联邦学习的基准数据集的实验结果表明,我们的方法在平均误差方面与古典误差竞争,并且在误差的尾统计方面优于它们。
translated by 谷歌翻译
联合学习(FL)是机器学习的一个子领域,在该子机学习中,多个客户试图在通信约束下通过网络进行协作学习模型。我们考虑在二阶功能相似性条件和强凸度下联合优化的有限和联合优化,并提出了两种新算法:SVRP和催化的SVRP。这种二阶相似性条件最近越来越流行,并且在包括分布式统计学习和差异性经验风险最小化在内的许多应用中得到满足。第一种算法SVRP结合了近似随机点评估,客户采样和降低方差。我们表明,当功能相似性足够高时,SVRP是沟通有效的,并且在许多现有算法上取得了卓越的性能。我们的第二个算法,催化的SVRP,是SVRP的催化剂加速变体,在二阶相似性和强凸度下,现有的联合优化算法可实现更好的性能,并均匀地改善了现有的算法。在分析这些算法的过程中,我们提供了可能具有独立关注的随机近端方法(SPPM)的新分析。我们对SPPM的分析很简单,允许进行近似近端评估,不需要任何平滑度假设,并且在通信复杂性上比普通分布式随机梯度下降显示出明显的好处。
translated by 谷歌翻译
数据异构联合学习(FL)系统遭受了两个重要的收敛误差来源:1)客户漂移错误是由于在客户端执行多个局部优化步骤而引起的,以及2)部分客户参与错误,这是一个事实,仅一小部分子集边缘客户参加每轮培训。我们发现其中,只有前者在文献中受到了极大的关注。为了解决这个问题,我们提出了FedVarp,这是在服务器上应用的一种新颖的差异算法,它消除了由于部分客户参与而导致的错误。为此,服务器只是将每个客户端的最新更新保持在内存中,并将其用作每回合中非参与客户的替代更新。此外,为了减轻服务器上的内存需求,我们提出了一种新颖的基于聚类的方差降低算法clusterfedvarp。与以前提出的方法不同,FedVarp和ClusterFedVarp均不需要在客户端上进行其他计算或其他优化参数的通信。通过广泛的实验,我们表明FedVarp优于最先进的方法,而ClusterFedVarp实现了与FedVarp相当的性能,并且记忆要求较少。
translated by 谷歌翻译
从经验上证明,在跨客户聚集之前应用多个本地更新的实践是克服联合学习(FL)中的通信瓶颈的成功方法。在这项工作中,我们提出了一种通用食谱,即FedShuffle,可以更好地利用FL中的本地更新,尤其是在异质性方面。与许多先前的作品不同,FedShuffle在每个设备的更新数量上没有任何统一性。我们的FedShuffle食谱包括四种简单的功能成分:1)数据的本地改组,2)调整本地学习率,3)更新加权,4)减少动量方差(Cutkosky and Orabona,2019年)。我们对FedShuffle进行了全面的理论分析,并表明从理论和经验上讲,我们的方法都不遭受FL方法中存在的目标功能不匹配的障碍,这些方法假设在异质FL设置中,例如FedAvg(McMahan等人,McMahan等, 2017)。此外,通过将上面的成分结合起来,FedShuffle在Fednova上改善(Wang等,2020),以前提议解决此不匹配。我们还表明,在Hessian相似性假设下,通过降低动量方差的FedShuffle可以改善非本地方法。最后,通过对合成和现实世界数据集的实验,我们说明了FedShuffle中使用的四种成分中的每种如何有助于改善FL中局部更新的使用。
translated by 谷歌翻译
我们提出了一种用于分布式培训神经网络模型的新型联合学习方法,其中服务器在每轮中随机选择的设备的子集之间编制协作。我们主要从通信角度查看联合学习问题,并允许更多设备级别计算来节省传输成本。我们指出了一个基本的困境,因为当地 - 设备水平的最低实证损失与全球经验损失的最小值不一致。与最近的事先有关的不同,尝试无所作用的最小化或利用用于并行化梯度计算的设备,我们为每轮的每个设备提出动态规范器,以便在极限中,全局和设备解决方案对齐。我们通过实证结果对真实的和合成数据以及我们的方案在凸和非凸面设置中导致有效培训的分析结果,同时对设备异质性完全不可知,以及大量设备,部分参与和不平衡的数据。
translated by 谷歌翻译
Federated Averaging (FEDAVG) has emerged as the algorithm of choice for federated learning due to its simplicity and low communication cost. However, in spite of recent research efforts, its performance is not fully understood. We obtain tight convergence rates for FEDAVG and prove that it suffers from 'client-drift' when the data is heterogeneous (non-iid), resulting in unstable and slow convergence.As a solution, we propose a new algorithm (SCAFFOLD) which uses control variates (variance reduction) to correct for the 'client-drift' in its local updates. We prove that SCAFFOLD requires significantly fewer communication rounds and is not affected by data heterogeneity or client sampling. Further, we show that (for quadratics) SCAFFOLD can take advantage of similarity in the client's data yielding even faster convergence. The latter is the first result to quantify the usefulness of local-steps in distributed optimization.
translated by 谷歌翻译
标准联合优化方法成功地适用于单层结构的随机问题。然而,许多当代的ML问题 - 包括对抗性鲁棒性,超参数调整和参与者 - 批判性 - 属于嵌套的双层编程,这些编程包含微型型和组成优化。在这项工作中,我们提出了\ fedblo:一种联合交替的随机梯度方法来解决一般的嵌套问题。我们在存在异质数据的情况下为\ fedblo建立了可证明的收敛速率,并引入了二聚体,最小值和组成优化的变化。\ fedblo引入了多种创新,包括联邦高级计算和降低方差,以解决内部级别的异质性。我们通过有关超参数\&超代理学习和最小值优化的实验来补充我们的理论,以证明我们方法在实践中的好处。代码可在https://github.com/ucr-optml/fednest上找到。
translated by 谷歌翻译
随机优化在最小化机器学习中的目标功能方面发现了广泛的应用,这激发了许多理论研究以了解其实际成功。大多数现有研究都集中在优化误差的收敛上,而随机优化的概括分析却落后了。在实践中经常遇到的非洞穴和非平滑问题的情况尤其如此。在本文中,我们初始化了对非凸和非平滑问题的随机优化的系统稳定性和概括分析。我们介绍了新型算法稳定性措施,并在人口梯度和经验梯度之间建立了定量联系,然后进一步扩展,以研究经验风险的莫罗(Moreau)膜之间的差距和人口风险的差距。据我们所知,尚未在文献中研究稳定性与概括之间的这些定量联系。我们引入了一类采样确定的算法,为此我们为三种稳定性度量而开发界限。最后,我们将这些讨论应用于随机梯度下降及其自适应变体的误差界限,我们在其中显示如何通过调整步骤大小和迭代次数来实现隐式正则化。
translated by 谷歌翻译
We show that parametric models trained by a stochastic gradient method (SGM) with few iterations have vanishing generalization error. We prove our results by arguing that SGM is algorithmically stable in the sense of Bousquet and Elisseeff. Our analysis only employs elementary tools from convex and continuous optimization. We derive stability bounds for both convex and non-convex optimization under standard Lipschitz and smoothness assumptions.Applying our results to the convex case, we provide new insights for why multiple epochs of stochastic gradient methods generalize well in practice. In the non-convex case, we give a new interpretation of common practices in neural networks, and formally show that popular techniques for training large deep models are indeed stability-promoting. Our findings conceptually underscore the importance of reducing training time beyond its obvious benefit.
translated by 谷歌翻译
作为一个普遍的分布式学习范式,联邦学习(FL)训练了大量通信的大量设备的全球模型。本文研究了FL设置中的一类复合优化和统计恢复问题,其损失函数由数据依赖的平滑损耗和非平滑正常器组成。示例包括使用套索的稀疏线性回归,使用核标准正则化等等的低级矩阵恢复等。在现有文献中,联合复合优化算法仅从优化的角度设计,而无需任何统计保证。此外,他们不考虑在统计恢复问题中常用(受限)强凸度。从优化和统计角度来看,我们都会推进此问题的前沿。从优化的前期,我们提出了一种名为\ textit {快速联合双平均}的新算法,用于强烈凸出和平滑损失,并在复合设置中建立最新的迭代和通信复杂性。特别是,我们证明它具有快速的速度,线性加速和减少的沟通回合。从统计前期开始,对于受限制的强烈凸出和平滑损失,我们设计了另一种算法,即\ textIt {多阶段联合双重平均},并证明了与线性加速绑定到最佳统计精度的高概率复杂性。合成数据和真实数据的实验表明,我们的方法的性能优于其他基线。据我们所知,这是为FL中复合问题提供快速优化算法和统计恢复保证的第一项工作。
translated by 谷歌翻译
由于其吸引人的稳健性以及可提供的效率保证,随机模型的方法最近得到了最新的关注。我们为改善基于模型的方法进行了两个重要扩展,即在随机弱凸优化上提高了基于模型的方法。首先,我们通过涉及一组样本来提出基于MiniBatch模型的方法,以近似每次迭代中的模型函数。我们首次表明随机算法即使对于非平滑和非凸(特别是弱凸)问题,即使是批量大小也可以实现线性加速。为此,我们开发了对每个算法迭代中涉及的近端映射的新颖敏感性分析。我们的分析似乎是更多常规设置的独立利益。其次,由于动量随机梯度下降的成功,我们提出了一种新的随机外推模型的方法,大大延伸到更广泛的随机算法中的经典多济会动量技术,用于弱凸优化。在相当灵活的外推术语范围内建立收敛速率。虽然主要关注弱凸优化,但我们还将我们的工作扩展到凸优化。我们将小纤维和外推模型的方法应用于随机凸优化,为此,我们为其提供了一种新的复杂性绑定和有前途的线性加速,批量尺寸。此外,提出了一种基于基于Nesterov动量的基于模型的方法,为此,我们建立了达到最优性的最佳复杂性。
translated by 谷歌翻译
我们研究了凸面和非凸面设置的差异私有随机优化。对于凸面的情况,我们专注于非平滑通用线性损耗(GLL)的家庭。我们的$ \ ell_2 $ setting算法在近线性时间内实现了最佳的人口风险,而最知名的差异私有算法在超线性时间内运行。我们的$ \ ell_1 $ setting的算法具有近乎最佳的人口风险$ \ tilde {o} \ big(\ sqrt {\ frac {\ log {n \ log {d}} {n \ varepsilon} \ big)$,以及避免\ Cite {ASI:2021}的尺寸依赖性下限为一般非平滑凸损耗。在差别私有的非凸面设置中,我们提供了几种新算法,用于近似居住的人口风险。对于具有平稳损失和多面体约束的$ \ ell_1 $ tuce,我们提供第一个近乎尺寸的独立速率$ \ tilde o \ big(\ frac {\ log ^ {2/3} {d}} {{(n \ varepsilon)^ {1/3}}} \大)在线性时间。对于具有平滑损耗的约束$ \ ell_2 $ -case,我们获得了速率$ \ tilde o \ big(\ frac {1} {n ^ {1/3}} + \ frac {d ^ { 1/5}} {(n \ varepsilon)^ {2/5}} \ big)$。最后,对于$ \ ell_2 $ -case,我们为{\ em非平滑弱凸}的第一种方法提供了速率$ \ tilde o \ big(\ frac {1} {n ^ {1/4}} + \ FRAC {D ^ {1/6}} {(n \ varepsilon)^ {1/3}} \ big)$,它在$ d = o(\ sqrt {n})时匹配最好的现有非私有算法$。我们还将上面的所有结果扩展到Non-Convex $ \ ell_2 $ setting到$ \ ell_p $ setting,其中$ 1 <p \ leq 2 $,只有polylogarithmic(维度在尺寸)的速度下。
translated by 谷歌翻译
Federated learning (FL) is a decentralized and privacy-preserving machine learning technique in which a group of clients collaborate with a server to learn a global model without sharing clients' data. One challenge associated with FL is statistical diversity among clients, which restricts the global model from delivering good performance on each client's task. To address this, we propose an algorithm for personalized FL (pFedMe) using Moreau envelopes as clients' regularized loss functions, which help decouple personalized model optimization from the global model learning in a bi-level problem stylized for personalized FL. Theoretically, we show that pFedMe's convergence rate is state-of-the-art: achieving quadratic speedup for strongly convex and sublinear speedup of order 2/3 for smooth nonconvex objectives. Experimentally, we verify that pFedMe excels at empirical performance compared with the vanilla FedAvg and Per-FedAvg, a meta-learning based personalized FL algorithm.
translated by 谷歌翻译
当今部署在边缘网络上的联合学习(FL)系统由大量在数据和/或计算能力中具有高度异质性的工人组成,这些工人要求在时间,努力,数据异质性等方面参加灵活的工作者参与为了满足灵活的工人参与的需求,我们考虑了一种新的FL范式,称为“无政府状态联邦学习”(AFL)(AFL)。与常规FL模型形成鲜明对比的是,AFL中的每个工人都可以自由选择i)何时参加FL,ii)根据当前情况(例如,电池,通信,电池级别,通信渠道,隐私问题)。但是,AFL中这种混乱的工人行为在算法设计中引发了许多新的开放问题。特别是,尚不清楚是否可以开发收敛的AFL训练算法,如果是的,则在什么条件下以及可实现的收敛速度的速度下。为此,我们提出了两种无政府状态的联合平均(AFA)算法,分别命名为AFA-CD和AFA-CS的跨设备和跨核心设置的双向学习率。令人惊讶的是,我们表明,在轻度的无政府状态假设下,这两种AFL算法都达到了最著名的收敛速率,作为常规FL的最新算法。此外,它们保留了新的AFL范式中的工人数量和本地步骤,保留了高度可取的{\ em线性加速效应}。我们通过对现实世界数据集进行广泛的实验来验证提出的算法。
translated by 谷歌翻译
在许多机器学习应用中,在许多移动或物联网设备上生成大规模和隐私敏感数据,在集中位置收集数据可能是禁止的。因此,在保持数据本地化的同时估计移动或物联网设备上的参数越来越吸引人。这种学习设置被称为交叉设备联合学习。在本文中,我们提出了第一理论上保证的跨装置联合学习设置中的一般Minimax问题的算法。我们的算法仅在每轮训练中只需要一小部分设备,这克服了设备的低可用性引入​​的困难。通过在与服务器通信之前对客户端执行多个本地更新步骤,并利用全局梯度估计来进一步减少通信开销,并利用全局梯度估计来校正由数据异质性引入的本地更新方向上的偏置。通过基于新型潜在功能的开发分析,我们为我们的算法建立了理论融合保障。 AUC最大化,强大的对抗网络培训和GAN培训任务的实验结果展示了我们算法的效率。
translated by 谷歌翻译
我们研究基于{\ em本地培训(LT)}范式的分布式优化方法:通过在参数平均之前对客户进行基于本地梯度的培训来实现沟通效率。回顾田地的进度,我们{\ em识别5代LT方法}:1)启发式,2)均匀,3)sublinear,4)线性和5)加速。由Mishchenko,Malinovsky,Stich和Richt \'{A} Rik(2022)发起的5 $ {}^{\ rm th} $生成,由Proxskip方法发起通信加速机制。受到最近进度的启发,我们通过证明可以使用{\ em差异}进一步增强它们,为5 $ {}^{\ rm th} $生成LT方法的生成。尽管LT方法的所有以前的所有理论结果都完全忽略了本地工作的成本,并且仅根据交流回合的数量而被构成,但我们证明我们的方法在{\ em总培训成本方面都比{\ em em总培训成本}大得多当本地计算足够昂贵时,在制度中的理论和实践中,最先进的方法是proxskip。我们从理论上表征了这个阈值,并通过经验结果证实了我们的理论预测。
translated by 谷歌翻译