通过深度生成建模的学习表示是动态建模的强大方法,以发现数据的最简化和压缩的基础描述,然后将其用于诸如预测的其他任务。大多数学习任务具有内在的对称性,即输入变换将输出保持不变,或输出经过类似的转换。然而,学习过程通常是对这些对称性的不知情。因此,单独转换输入的学习表示可能不会有意义地相关。在本文中,我们提出了一种如此(3)个等级的深层动态模型(EQDDM),用于运动预测,用于在嵌入随对称转换的情况下变化的意义上学习输入空间的结构化表示。 EQDDM配备了等级网络,可参数化状态空间发射和转换模型。我们展示了在各种运动数据上提出了拟议模型的卓越预测性能。
translated by 谷歌翻译
Recent work has constructed neural networks that are equivariant to continuous symmetry groups such as 2D and 3D rotations. This is accomplished using explicit Lie group representations to derive the equivariant kernels and nonlinearities. We present three contributions motivated by frontier applications of equivariance beyond rotations and translations. First, we relax the requirement for explicit Lie group representations with a novel algorithm that finds representations of arbitrary Lie groups given only the structure constants of the associated Lie algebra. Second, we provide a self-contained method and software for building Lie group-equivariant neural networks using these representations. Third, we contribute a novel benchmark dataset for classifying objects from relativistic point clouds, and apply our methods to construct the first object-tracking model equivariant to the Poincar\'e group.
translated by 谷歌翻译
生成建模旨在揭示产生观察到的数据的潜在因素,这些数据通常可以被建模为自然对称性,这些对称性是通过不变和对某些转型定律等效的表现出来的。但是,当前代表这些对称性的方法是在需要构建模棱两可矢量场的连续正式化流中所掩盖的 - 抑制了它们在常规的高维生成建模域(如自然图像)中的简单应用。在本文中,我们专注于使用离散层建立归一化流量。首先,我们从理论上证明了对紧凑空间的紧凑型组的模棱两可的图。我们进一步介绍了三个新的品牌流:$ g $ - 剩余的流量,$ g $ - 耦合流量和$ g $ - inverse自动回旋的回旋流量,可以提升经典的残留剩余,耦合和反向自动性流量,并带有等效的地图, $。从某种意义上说,我们证明$ g $ equivariant的差异性可以通过$ g $ - $ residual流量映射,我们的$ g $ - 剩余流量也很普遍。最后,我们首次在诸如CIFAR-10之类的图像数据集中对我们的理论见解进行了补充,并显示出$ G $ equivariant有限的有限流量,从而提高了数据效率,更快的收敛性和提高的可能性估计。
translated by 谷歌翻译
我们如何获得世界模型,这些模型在什么以及我们的行动如何影响它方面都在终止代表外界?我们可以通过与世界互动而获得此类模型,并且我们是否可以说明数学逃亡者与他们与脑海中存在的假设现实的关系?随着机器学习不仅朝着包含观察性的代表性,而且介入介入知识的趋势,我们使用代表学习和小组理论的工具研究了这些问题。在假设我们的执行者对世界上作用的假设,我们提出了学习的方法,不仅要学习感官信息的内部表示,而且还以与世界上的行动和过渡相一致的方式来修改我们的感觉表示的行为。我们使用配备有线性作用在其潜在空间上的组表示的自动编码器,该空间对2步重建进行了训练,例如在组表示上执行合适的同构属性。与现有工作相比,我们的方法对组表示的假设更少,并且代理可以从组中采样的转换。我们从理论上激励我们的方法,并从经验上证明它可以学习群体和环境拓扑的正确表示。我们还将其在轨迹预测中的性能与以前的方法进行比较。
translated by 谷歌翻译
We introduce Group equivariant Convolutional Neural Networks (G-CNNs), a natural generalization of convolutional neural networks that reduces sample complexity by exploiting symmetries. G-CNNs use G-convolutions, a new type of layer that enjoys a substantially higher degree of weight sharing than regular convolution layers. G-convolutions increase the expressive capacity of the network without increasing the number of parameters. Group convolution layers are easy to use and can be implemented with negligible computational overhead for discrete groups generated by translations, reflections and rotations. G-CNNs achieve state of the art results on CI-FAR10 and rotated MNIST.
translated by 谷歌翻译
合并对称性可以通过定义通过转换相关的数据样本的等效类别来导致高度数据效率和可推广的模型。但是,表征转换如何在输入数据上作用通常很困难,从而限制了模型模型的适用性。我们提出了编码输入空间(例如图像)的学习对称嵌入网络(SENS),我们不知道转换的效果(例如旋转),以在这些操作下以已知方式转换的特征空间。可以通过模棱两可的任务网络端对端训练该网络,以学习明确的对称表示。我们在具有3种不同形式的对称形式的模棱两可的过渡模型的背景下验证了这种方法。我们的实验表明,SENS有助于将模棱两可的网络应用于具有复杂对称表示的数据。此外,相对于全等级和非等价基线的准确性和泛化可以提高准确性和概括。
translated by 谷歌翻译
在压缩感应中,目标是从线性测量系统不确定的系统中重建信号。因此,需要有关关注信号及其结构的先验知识。此外,在许多情况下,该信号在测量之前具有未知的方向。为了解决此类恢复问题,我们建议使用Equivariant生成模型作为先验,该模型将定向信息封装在其潜在空间中。因此,我们表明,具有未知取向的信号可以通过这些模型的潜在空间的迭代梯度下降来恢复,并提供额外的理论恢复保证。我们构建一个模棱两可的变量自动编码器,并将解码器用作压缩传感的生成性先验。我们在收敛和潜伏期方面讨论了拟议方法的其他潜在收益。
translated by 谷歌翻译
我们提出了一种新颖的机器学习体系结构,双光谱神经网络(BNNS),用于学习数据的数据表示,这些数据是对定义信号的空间中组的行为不变的。该模型结合了双光谱的ANSATZ,这是一个完整的分析定义的组不变的,也就是说,它保留了所有信号结构,同时仅删除了由于组动作而造成的变化。在这里,我们证明了BNN能够在数据中发现任意的交换群体结构,并且训练有素的模型学习了组的不可减至表示,从而可以恢复组Cayley表。值得注意的是,受过训练的网络学会了对这些组的双偏见,因此具有分析对象的稳健性,完整性和通用性。
translated by 谷歌翻译
现有的等分性神经网络需要先前了解对称组和连续组的离散化。我们建议使用Lie代数(无限发电机)而不是谎言群体。我们的模型,Lie代数卷积网络(L-Chir)可以自动发现对称性,并不需要该组的离散化。我们展示L-CONC可以作为构建任何组的建筑块,以构建任何组的馈电架构。CNN和图表卷积网络都可以用适当的组表示为L-DIV。我们发现L-CONC和物理学之间的直接连接:(1)组不变损失概括场理论(2)欧拉拉格朗法令方程测量鲁棒性,(3)稳定性导致保护法和挪威尔特。这些连接开辟了新的途径用于设计更多普遍等级的网络并将其应用于物理科学中的重要问题
translated by 谷歌翻译
建设深入学习系统之间通常有足够刺激现实的细微差别的深入学习系统之间的权衡,并具有良好的感应偏差以获得高效学习。我们将残留的途径(RPPS)引入了将硬建筑限制转换为软前沿的方法,引导模型朝向结构化解决方案,同时保留捕获额外复杂性的能力。使用RPPS,我们用归纳偏差构建具有协调的归纳偏差,但不限制灵活性。我们表明RPPS对近似或错过的对称性有弹性,并且即使在对称性精确时也与完全约束的模型有效。我们展示RPP与动态系统,表格数据和加强学习的广泛适用性。在Mujoco Locomotion任务中,其中联系力和定向奖励违反了严格的标准性假设,RPP优于无基线的无模型RL代理,并且还改善了基于模型的RL的学习过渡模型。
translated by 谷歌翻译
我们为高维顺序数据提出了深度潜在的变量模型。我们的模型将潜在空间分解为内容和运动变量。为了模拟多样化的动态,我们将运动空间分成子空间,并为每个子空间引入一个独特的哈密顿运算符。Hamiltonian配方提供可逆动态,学习限制运动路径以保护不变性属性。运动空间的显式分裂将哈密顿人分解成对称组,并提供动态的长期可分离性。这种拆分也意味着可以学习的表示,这很容易解释和控制。我们展示了我们模型来交换两个视频的运动,从给定的图像和无条件序列生成产生各种动作的序列。
translated by 谷歌翻译
我们介绍了一种与数据对称性相对的学习表示形式的通用方法。核心思想是将潜在空间分解为不变因素和对称组本身。该组件在语义上分别对应于固有的数据类别,并构成姿势。学习者是自我监督的,并根据相对对称信息来渗透这些语义。该方法是由群体理论的理论结果激励的,并保证了无损,可解释和解开的表示。我们通过涉及具有多种对称性的数据集的实验来实证研究该方法。结果表明,我们的表示形式捕获数据的几何形状,并超过其他模棱两可的表示框架。
translated by 谷歌翻译
模棱两可的神经网络,其隐藏的特征根据G组作用于数据的表示,表现出训练效率和提高的概括性能。在这项工作中,我们将群体不变和模棱两可的表示学习扩展到无监督的深度学习领域。我们根据编码器框架提出了一种通用学习策略,其中潜在表示以不变的术语和模棱两可的组动作组件分开。关键的想法是,网络学会通过学习预测适当的小组操作来对齐输入和输出姿势以解决重建任务的适当组动作来编码和从组不变表示形式进行编码和解码数据。我们在Equivariant编码器上得出必要的条件,并提出了对任何G(离散且连续的)有效的构造。我们明确描述了我们的旋转,翻译和排列的构造。我们在采用不同网络体系结构的各种数据类型的各种实验中测试了方法的有效性和鲁棒性。
translated by 谷歌翻译
线性神经网络层的模棱两可。在这项工作中,我们放宽了肩variance条件,只有在投影范围内才是真实的。特别是,我们研究了投射性和普通的肩那样的关系,并表明对于重要的例子,这些问题实际上是等效的。3D中的旋转组在投影平面上投影起作用。在设计用于过滤2D-2D对应的网络时,我们在实验上研究了旋转肩位的实际重要性。完全模型的模型表现不佳,虽然简单地增加了不变的特征,从而在强大的基线产量中得到了改善,但这似乎并不是由于改善的均衡性。
translated by 谷歌翻译
Steerable convolutional neural networks (CNNs) provide a general framework for building neural networks equivariant to translations and other transformations belonging to an origin-preserving group $G$, such as reflections and rotations. They rely on standard convolutions with $G$-steerable kernels obtained by analytically solving the group-specific equivariance constraint imposed onto the kernel space. As the solution is tailored to a particular group $G$, the implementation of a kernel basis does not generalize to other symmetry transformations, which complicates the development of group equivariant models. We propose using implicit neural representation via multi-layer perceptrons (MLPs) to parameterize $G$-steerable kernels. The resulting framework offers a simple and flexible way to implement Steerable CNNs and generalizes to any group $G$ for which a $G$-equivariant MLP can be built. We apply our method to point cloud (ModelNet-40) and molecular data (QM9) and demonstrate a significant improvement in performance compared to standard Steerable CNNs.
translated by 谷歌翻译
我们研究小组对称性如何帮助提高端到端可区分计划算法的数据效率和概括,特别是在2D机器人路径计划问题上:导航和操纵。我们首先从价值迭代网络(VIN)正式使用卷积网络进行路径计划,因为它避免了明确构建等价类别并启用端到端计划。然后,我们证明价值迭代可以始终表示为(2D)路径计划的某种卷积形式,并将结果范式命名为对称范围(SYMPLAN)。在实施中,我们使用可进入的卷积网络来合并对称性。我们在导航和操纵方面的算法,具有给定或学习的地图,提高了与非等级同行VIN和GPPN相比,大幅度利润的训练效率和概括性能。
translated by 谷歌翻译
Modelling interactions is critical in learning complex dynamical systems, namely systems of interacting objects with highly non-linear and time-dependent behaviour. A large class of such systems can be formalized as $\textit{geometric graphs}$, $\textit{i.e.}$, graphs with nodes positioned in the Euclidean space given an $\textit{arbitrarily}$ chosen global coordinate system, for instance vehicles in a traffic scene. Notwithstanding the arbitrary global coordinate system, the governing dynamics of the respective dynamical systems are invariant to rotations and translations, also known as $\textit{Galilean invariance}$. As ignoring these invariances leads to worse generalization, in this work we propose local coordinate frames per node-object to induce roto-translation invariance to the geometric graph of the interacting dynamical system. Further, the local coordinate frames allow for a natural definition of anisotropic filtering in graph neural networks. Experiments in traffic scenes, 3D motion capture, and colliding particles demonstrate that the proposed approach comfortably outperforms the recent state-of-the-art.
translated by 谷歌翻译
将对称性作为归纳偏置纳入神经网络体系结构已导致动态建模的概括,数据效率和身体一致性的提高。诸如CNN或e夫神经网络之类的方法使用重量绑定来强制执行对称性,例如偏移不变性或旋转率。但是,尽管物理定律遵守了许多对称性,但实际动力学数据很少符合严格的数学对称性,这是由于嘈杂或不完整的数据或基础动力学系统中的对称性破坏特征。我们探索近似模棱两可的网络,这些网络偏向于保存对称性,但并非严格限制这样做。通过放松的均衡约束,我们发现我们的模型可以胜过两个基线,而在模拟的湍流域和现实世界中的多流射流流中都没有对称性偏差和基线,并且具有过度严格的对称性。
translated by 谷歌翻译
可进入的模型可以通过在表示理论和特征领域的语言中制定均衡性要求来提供非常通用和灵活的均衡性,这对许多视觉任务都是有效的。但是,由于3D旋转的数学更复杂,因此在2D情况下得出3D旋转模型要困难得多。在这项工作中,我们采用部分差分运算符(PDOS)来模型3D滤波器,并得出了通用的可检测3D CNN,称为PDO-S3DCNNS。我们证明,模棱两可的过滤器受线性约束的约束,可以在各种条件下有效地解决。据我们所知,PDO-S3DCNNS是3D旋转的最通用的CNN,因为它们涵盖了所有$ SO(3)$及其表示的所有常见子组,而现有方法只能应用于特定的组和特定组和表示。广泛的实验表明,我们的模型可以很好地保留在离散域中的均衡性,并且在SHREC'17检索和ISBI 2012分割任务上的表现都超过了以前的网络复杂性。
translated by 谷歌翻译
在这项工作中,我们寻求弥合神经网络中地形组织和设备的概念。为实现这一目标,我们介绍了一种新颖的方法,用于有效地培训具有地形组织的潜变量的深度生成模型。我们表明,这种模型确实学会根据突出的特征,例如在MNIST上的数字,宽度和样式等突出特征来组织激活。此外,通过地形组织随着时间的推移(即时间相干),我们展示了如何鼓励预定义的潜空间转换运营商,以便观察到的转换输入序列 - 这是一种无监督的学习设备的原始形式。我们展示了该模型直接从序列中直接从序列中学习大约成反比的特征(即“胶囊”)并在相应变换测试序列上实现更高的似然性。通过测量推理网络的近似扩展和序列变换来定量验证标准验证。最后,我们展示了复杂转化的近似值,扩大了现有组的常量神经网络的能力。
translated by 谷歌翻译