在压缩感应中,目标是从线性测量系统不确定的系统中重建信号。因此,需要有关关注信号及其结构的先验知识。此外,在许多情况下,该信号在测量之前具有未知的方向。为了解决此类恢复问题,我们建议使用Equivariant生成模型作为先验,该模型将定向信息封装在其潜在空间中。因此,我们表明,具有未知取向的信号可以通过这些模型的潜在空间的迭代梯度下降来恢复,并提供额外的理论恢复保证。我们构建一个模棱两可的变量自动编码器,并将解码器用作压缩传感的生成性先验。我们在收敛和潜伏期方面讨论了拟议方法的其他潜在收益。
translated by 谷歌翻译
The goal of compressed sensing is to estimate a vector from an underdetermined system of noisy linear measurements, by making use of prior knowledge on the structure of vectors in the relevant domain. For almost all results in this literature, the structure is represented by sparsity in a well-chosen basis. We show how to achieve guarantees similar to standard compressed sensing but without employing sparsity at all. Instead, we suppose that vectors lie near the range of a generative model G : R k → R n . Our main theorem is that, if G is L-Lipschitz, then roughly O(k log L) random Gaussian measurements suffice for an 2/ 2 recovery guarantee. We demonstrate our results using generative models from published variational autoencoder and generative adversarial networks. Our method can use 5-10x fewer measurements than Lasso for the same accuracy.
translated by 谷歌翻译
在本文中,我们提出了预测的梯度下降(PGD)算法,以通过嘈杂的非线性测量值进行信号估计。我们假设未知的$ p $维信号位于$ l $ -Lipschitz连续生成模型的范围内,具有有限的$ k $二维输入。特别是,我们考虑了两种情况,即非线性链接函数是未知或已知的情况。对于未知的非线性,类似于\ cite {liu2020循环},我们做出了次高斯观察结果的假设,并提出了线性最小二乘估计器。我们表明,当没有表示误差并且传感向量为高斯时,大约是$ o(k \ log l)$样品足以确保PGD算法将线性收敛到使用任意初始化的最佳统计率的点。对于已知的非线性,我们假设单调性如\ cite {yang2016sparse}中,并在传感向量上做出更弱的假设并允许表示误差。我们提出了一个非线性最小二乘估计器,该估计量可以保证享有最佳的统计率。提供了相应的PGD算法,并显示出使用任意初始化将线性收敛到估算器。此外,我们在图像数据集上提出了实验结果,以证明我们的PGD算法的性能。
translated by 谷歌翻译
The Bayesian approach to solving inverse problems relies on the choice of a prior. This critical ingredient allows the formulation of expert knowledge or physical constraints in a probabilistic fashion and plays an important role for the success of the inference. Recently, Bayesian inverse problems were solved using generative models as highly informative priors. Generative models are a popular tool in machine learning to generate data whose properties closely resemble those of a given database. Typically, the generated distribution of data is embedded in a low-dimensional manifold. For the inverse problem, a generative model is trained on a database that reflects the properties of the sought solution, such as typical structures of the tissue in the human brain in magnetic resonance (MR) imaging. The inference is carried out in the low-dimensional manifold determined by the generative model which strongly reduces the dimensionality of the inverse problem. However, this proceeding produces a posterior that admits no Lebesgue density in the actual variables and the accuracy reached can strongly depend on the quality of the generative model. For linear Gaussian models we explore an alternative Bayesian inference based on probabilistic generative models which is carried out in the original high-dimensional space. A Laplace approximation is employed to analytically derive the required prior probability density function induced by the generative model. Properties of the resulting inference are investigated. Specifically, we show that derived Bayes estimates are consistent, in contrast to the approach employing the low-dimensional manifold of the generative model. The MNIST data set is used to construct numerical experiments which confirm our theoretical findings.
translated by 谷歌翻译
在过去的几年中,深层神经网络方法的反向成像问题产生了令人印象深刻的结果。在本文中,我们考虑在跨问题方法中使用生成模型。所考虑的正规派对图像进行了惩罚,这些图像远非生成模型的范围,该模型学会了产生类似于训练数据集的图像。我们命名这个家庭\ textit {生成正规派}。生成常规人的成功取决于生成模型的质量,因此我们提出了一组所需的标准来评估生成模型并指导未来的研究。在我们的数值实验中,我们根据我们所需的标准评估了三种常见的生成模型,自动编码器,变异自动编码器和生成对抗网络。我们还测试了三个不同的生成正规疗法仪,关于脱毛,反卷积和断层扫描的逆问题。我们表明,逆问题的限制解决方案完全位于生成模型的范围内可以给出良好的结果,但是允许与发电机范围的小偏差产生更一致的结果。
translated by 谷歌翻译
神经网络在许多科学学科中发挥着越来越大的作用,包括物理学。变形AutoEncoders(VAE)是能够表示在低维潜空间中的高维数据的基本信息,该神经网络具有概率解释。特别是所谓的编码器网络,VAE的第一部分,其将其输入到潜伏空间中的位置,另外在该位置的方差方面提供不确定性信息。在这项工作中,介绍了对AutoEncoder架构的扩展,渔民。在该架构中,借助于Fisher信息度量,不使用编码器中的附加信息信道生成潜在空间不确定性,而是从解码器导出。这种架构具有来自理论观点的优点,因为它提供了从模型的直接不确定性量化,并且还考虑不确定的交叉相关。我们可以通过实验表明,渔民生产比可比较的VAE更准确的数据重建,并且其学习性能也明显较好地缩放了潜伏空间尺寸的数量。
translated by 谷歌翻译
近年来,在诸如denoing,压缩感应,介入和超分辨率等反问题中使用深度学习方法的使用取得了重大进展。尽管这种作品主要是由实践算法和实验驱动的,但它也引起了各种有趣的理论问题。在本文中,我们调查了这一作品中一些突出的理论发展,尤其是生成先验,未经训练的神经网络先验和展开算法。除了总结这些主题中的现有结果外,我们还强调了一些持续的挑战和开放问题。
translated by 谷歌翻译
在本文中,我们考虑从噪声损坏的$ M $二进制测量恢复$ N $尺寸信号,并在假设目标信号具有低生成内在尺寸,即,目标信号可以通过$ l近似生成。$ -lipschitz生成器$ g:\ mathbb {r} ^ k \ lightarrow \ mathbb {r} ^ {n},k \ ll n $。虽然二进制测量模型是高度非线性的,但我们提出了最小二乘解码器并证明,最多可达$ C $,具有很高的概率,最小二乘解码器实现了急剧估计错误$ \ Mathcal {O}(\ SQRT {只要$ m \ geq \ mathcal {o}(k \ log(ln))$,只要$ m \ geq \ mathcal {o}广泛的数值模拟和具有最先进方法的比较显示了最小的方形解码器对噪声和标志翻转是强大的,如我们的理论所示。通过用正确选择的深度和宽度构造Relu网络,我们验证了(大约)的深生成点,这是独立的兴趣。
translated by 谷歌翻译
在本文中,我们研究了主要成分分析的问题,并采用了生成建模假设,采用了一个普通矩阵的通用模型,该模型包括涉及尖峰矩阵恢复和相位检索在内的明显特殊情况。关键假设是,基础信号位于$ l $ -Lipschitz连续生成模型的范围内,该模型具有有限的$ k $二维输入。我们提出了一个二次估计器,并证明它享有顺序的统计率$ \ sqrt {\ frac {k \ log l} {m} {m}} $,其中$ m $是样本的数量。我们还提供了近乎匹配的算法独立的下限。此外,我们提供了经典功率方法的一种变体,该方法将计算的数据投射到每次迭代期间生成模型的范围内。我们表明,在适当的条件下,该方法将指数级的快速收敛到达到上述统计率的点。我们在各种图像数据集上对峰值矩阵和相位检索模型进行实验,并说明了我们方法的性能提高到经典功率方法,并为稀疏主组件分析设计了截断的功率方法。
translated by 谷歌翻译
生成建模旨在揭示产生观察到的数据的潜在因素,这些数据通常可以被建模为自然对称性,这些对称性是通过不变和对某些转型定律等效的表现出来的。但是,当前代表这些对称性的方法是在需要构建模棱两可矢量场的连续正式化流中所掩盖的 - 抑制了它们在常规的高维生成建模域(如自然图像)中的简单应用。在本文中,我们专注于使用离散层建立归一化流量。首先,我们从理论上证明了对紧凑空间的紧凑型组的模棱两可的图。我们进一步介绍了三个新的品牌流:$ g $ - 剩余的流量,$ g $ - 耦合流量和$ g $ - inverse自动回旋的回旋流量,可以提升经典的残留剩余,耦合和反向自动性流量,并带有等效的地图, $。从某种意义上说,我们证明$ g $ equivariant的差异性可以通过$ g $ - $ residual流量映射,我们的$ g $ - 剩余流量也很普遍。最后,我们首次在诸如CIFAR-10之类的图像数据集中对我们的理论见解进行了补充,并显示出$ G $ equivariant有限的有限流量,从而提高了数据效率,更快的收敛性和提高的可能性估计。
translated by 谷歌翻译
通过深度生成建模的学习表示是动态建模的强大方法,以发现数据的最简化和压缩的基础描述,然后将其用于诸如预测的其他任务。大多数学习任务具有内在的对称性,即输入变换将输出保持不变,或输出经过类似的转换。然而,学习过程通常是对这些对称性的不知情。因此,单独转换输入的学习表示可能不会有意义地相关。在本文中,我们提出了一种如此(3)个等级的深层动态模型(EQDDM),用于运动预测,用于在嵌入随对称转换的情况下变化的意义上学习输入空间的结构化表示。 EQDDM配备了等级网络,可参数化状态空间发射和转换模型。我们展示了在各种运动数据上提出了拟议模型的卓越预测性能。
translated by 谷歌翻译
模棱两可的神经网络,其隐藏的特征根据G组作用于数据的表示,表现出训练效率和提高的概括性能。在这项工作中,我们将群体不变和模棱两可的表示学习扩展到无监督的深度学习领域。我们根据编码器框架提出了一种通用学习策略,其中潜在表示以不变的术语和模棱两可的组动作组件分开。关键的想法是,网络学会通过学习预测适当的小组操作来对齐输入和输出姿势以解决重建任务的适当组动作来编码和从组不变表示形式进行编码和解码数据。我们在Equivariant编码器上得出必要的条件,并提出了对任何G(离散且连续的)有效的构造。我们明确描述了我们的旋转,翻译和排列的构造。我们在采用不同网络体系结构的各种数据类型的各种实验中测试了方法的有效性和鲁棒性。
translated by 谷歌翻译
在这项工作中,我们寻求弥合神经网络中地形组织和设备的概念。为实现这一目标,我们介绍了一种新颖的方法,用于有效地培训具有地形组织的潜变量的深度生成模型。我们表明,这种模型确实学会根据突出的特征,例如在MNIST上的数字,宽度和样式等突出特征来组织激活。此外,通过地形组织随着时间的推移(即时间相干),我们展示了如何鼓励预定义的潜空间转换运营商,以便观察到的转换输入序列 - 这是一种无监督的学习设备的原始形式。我们展示了该模型直接从序列中直接从序列中学习大约成反比的特征(即“胶囊”)并在相应变换测试序列上实现更高的似然性。通过测量推理网络的近似扩展和序列变换来定量验证标准验证。最后,我们展示了复杂转化的近似值,扩大了现有组的常量神经网络的能力。
translated by 谷歌翻译
我们介绍了一种从高维时间序列数据学习潜在随机微分方程(SDES)的方法。考虑到从较低维潜在未知IT \ ^ O过程产生的高维时间序列,所提出的方法通过自我监督的学习方法学习从环境到潜在空间的映射和潜在的SDE系数。使用变形AutiaceOders的框架,我们考虑基于SDE解决方案的Euler-Maruyama近似的数据的条件生成模型。此外,我们使用最近的结果对潜在变量模型的可识别性来表明,所提出的模型不仅可以恢复底层的SDE系数,还可以在无限数据的极限中恢复底层的SDE系数,也可以最大潜在潜在变量。我们通过多个模拟视频处理任务验证方法,其中底层SDE是已知的,并通过真实的世界数据集。
translated by 谷歌翻译
矢量量化变量自动编码器(VQ-VAE)是基于数据的离散潜在表示的生成模型,其中输入映射到有限的学习嵌入式集合。要生成新样品,必须对离散状态进行自动介绍的先验分布。分别地。这一先验通常非常复杂,并导致生成缓慢。在这项工作中,我们提出了一个新模型,以同时训练先验和编码器/解码器网络。我们在连续编码的向量和非信息性先验分布之间建立扩散桥。然后将潜在离散状态作为这些连续向量的随机函数。我们表明,我们的模型与迷你imagenet和Cifar数据集的自动回归先验具有竞争力,并且在优化和采样方面都有效。我们的框架还扩展了标准VQ-VAE,并可以启用端到端培训。
translated by 谷歌翻译
近年来,深度学习在图像重建方面取得了显着的经验成功。这已经促进了对关键用例中数据驱动方法的正确性和可靠性的精确表征的持续追求,例如在医学成像中。尽管基于深度学习的方法具有出色的性能和功效,但对其稳定性或缺乏稳定性的关注以及严重的实际含义。近年来,已经取得了重大进展,以揭示数据驱动的图像恢复方法的内部运作,从而挑战了其广泛认为的黑盒本质。在本文中,我们将为数据驱动的图像重建指定相关的融合概念,该概念将构成具有数学上严格重建保证的学习方法调查的基础。强调的一个例子是ICNN的作用,提供了将深度学习的力量与经典凸正则化理论相结合的可能性,用于设计被证明是融合的方法。这篇调查文章旨在通过提供对数据驱动的图像重建方法以及从业人员的理解,旨在通过提供可访问的融合概念的描述,并通过将一些现有的经验实践放在可靠的数学上,来推进我们对数据驱动图像重建方法的理解以及从业人员的了解。基础。
translated by 谷歌翻译
在这项工作中,我们已经提出了一种称为VAE-Krnet的生成模型,用于密度估计或近似,其将规范变形Autiachoder(VAE)与我们最近开发的基于流的生成模型相结合,称为Krnet。 VAE用作尺寸减少技术以捕获潜伏空间,并且Krnet用于模拟潜在变量的分布。在数据和潜在变量之间使用线性模型,我们表明VAE-Krnet可以比规范VAE更有效且鲁棒。 VAE-KRNET可以用作密度模型,以近似数据分布或任意概率密度函数(PDF)已知到常数。 VAE-KRNET在维度方面灵活。当尺寸的数量相对较小时,Krnet可以有效地近似于原始随机变量的分布。对于高维病例,我们可以使用VAE-Krnet合并尺寸减少。 VAE-Krnet的一个重要应用是用于后部分布的近似的变分贝叶。变分贝叶斯方法通常基于模型和后部之间的Kullback-Leibler(KL)发散的最小化。对于高尺寸分布,由于维度的诅咒构建精确的密度模型是非常具有挑战性的,其中通常引入额外的假设以效率。例如,经典平均场方法假设尺寸之间的相互独立性,这通常会导致由于过度简化而产生低估的方差。为了减轻这个问题,我们包括丢失潜在随机变量和原始随机变量之间的相互信息的最大化,这有助于从低密度的区域保持更多信息,使得方差估计得到改善。
translated by 谷歌翻译
We define and address the problem of unsupervised learning of disentangled representations on data generated from independent factors of variation. We propose FactorVAE, a method that disentangles by encouraging the distribution of representations to be factorial and hence independent across the dimensions. We show that it improves upon β-VAE by providing a better trade-off between disentanglement and reconstruction quality. Moreover, we highlight the problems of a commonly used disentanglement metric and introduce a new metric that does not suffer from them.
translated by 谷歌翻译
在许多现实世界中,只有不完整的测量数据可用于培训,这可能会带来学习重建功能的问题。实际上,通常不可能使用固定的不完整测量过程学习,因为测量运算符的无信息中没有信息。可以通过使用来自多个操作员的测量来克服此限制。尽管该想法已成功地应用于各种应用中,但仍缺乏对学习条件的精确表征。在本文中,我们通过提出必要和充分的条件来学习重建所需的基本信号模型,以指示不同测量运算符数量之间的相互作用,每个操作员的测量数量,模型的尺寸和尺寸之间的相互作用。信号。此外,我们提出了一个新颖且概念上简单的无监督学习损失,该损失仅需要访问不完整的测量数据,并在验证足够的条件时与受监督学习的表现达到相同的表现。我们通过一系列有关各种成像逆问题的实验,例如加速磁共振成像,压缩感测和图像介入,通过一系列实验来验证我们的理论界限,并证明了与以前的方法相比,提出的无监督损失的优势。
translated by 谷歌翻译
从早期图像处理到现代计算成像,成功的模型和算法都依赖于自然信号的基本属性:对称性。在这里,对称是指信号集的不变性属性,例如翻译,旋转或缩放等转换。对称性也可以以模棱两可的形式纳入深度神经网络中,从而可以进行更多的数据效率学习。虽然近年来端到端的图像分类网络的设计方面取得了重要进展,但计算成像引入了对等效网络解决方案的独特挑战,因为我们通常只通过一些嘈杂的不良反向操作员观察图像,可能不是均等的。我们回顾了现象成像的新兴领域,并展示它如何提供改进的概括和新成像机会。在此过程中,我们展示了采集物理学与小组动作之间的相互作用,以及与迭代重建,盲目的压缩感应和自我监督学习之间的联系。
translated by 谷歌翻译