模棱两可的神经网络,其隐藏的特征根据G组作用于数据的表示,表现出训练效率和提高的概括性能。在这项工作中,我们将群体不变和模棱两可的表示学习扩展到无监督的深度学习领域。我们根据编码器框架提出了一种通用学习策略,其中潜在表示以不变的术语和模棱两可的组动作组件分开。关键的想法是,网络学会通过学习预测适当的小组操作来对齐输入和输出姿势以解决重建任务的适当组动作来编码和从组不变表示形式进行编码和解码数据。我们在Equivariant编码器上得出必要的条件,并提出了对任何G(离散且连续的)有效的构造。我们明确描述了我们的旋转,翻译和排列的构造。我们在采用不同网络体系结构的各种数据类型的各种实验中测试了方法的有效性和鲁棒性。
translated by 谷歌翻译
Steerable convolutional neural networks (CNNs) provide a general framework for building neural networks equivariant to translations and other transformations belonging to an origin-preserving group $G$, such as reflections and rotations. They rely on standard convolutions with $G$-steerable kernels obtained by analytically solving the group-specific equivariance constraint imposed onto the kernel space. As the solution is tailored to a particular group $G$, the implementation of a kernel basis does not generalize to other symmetry transformations, which complicates the development of group equivariant models. We propose using implicit neural representation via multi-layer perceptrons (MLPs) to parameterize $G$-steerable kernels. The resulting framework offers a simple and flexible way to implement Steerable CNNs and generalizes to any group $G$ for which a $G$-equivariant MLP can be built. We apply our method to point cloud (ModelNet-40) and molecular data (QM9) and demonstrate a significant improvement in performance compared to standard Steerable CNNs.
translated by 谷歌翻译
群体模棱两可(例如,SE(3)均衡性)是科学的关键物理对称性,从经典和量子物理学到计算生物学。它可以在任意参考转换下实现强大而准确的预测。鉴于此,已经为将这种对称性编码为深神经网络而做出了巨大的努力,该网络已被证明可以提高下游任务的概括性能和数据效率。构建模棱两可的神经网络通常会带来高计算成本以确保表现力。因此,如何更好地折衷表现力和计算效率在模棱两可的深度学习模型的设计中起着核心作用。在本文中,我们提出了一个框架来构建可以有效地近似几何量的se(3)等效图神经网络。受差异几何形状和物理学的启发,我们向图形神经网络介绍了局部完整帧,因此可以将以给定订单的张量信息投射到框架上。构建本地框架以形成正常基础,以避免方向变性并确保完整性。由于框架仅是由跨产品操作构建的,因此我们的方法在计算上是有效的。我们在两个任务上评估我们的方法:牛顿力学建模和平衡分子构象的产生。广泛的实验结果表明,我们的模型在两种类型的数据集中达到了最佳或竞争性能。
translated by 谷歌翻译
最近,在对图形结构数据上应用深度神经网络有很大的成功。然而,大多数工作侧重于节点或图形级监督学习,例如节点,链接或图形分类或节点级无监督学习(例如节点群集)。尽管其应用广泛,但图表级无监督的学习尚未受到很多关注。这可能主要归因于图形的高表示复杂性,可以由n表示!等效邻接矩阵,其中n是节点的数量。在这项工作中,我们通过提出用于图形结构数据的置换不变变化自动码器来解决此问题。我们所提出的模型间接学习以匹配输入和输出图的节点排序,而不施加特定节点排序或执行昂贵的图形匹配。我们展示了我们提出模型对各种图形重建和生成任务的有效性,并评估了下游图形水平分类和回归提取的表示的表现力。
translated by 谷歌翻译
形状空间学习的任务涉及使用良好的概括性属性映射到从潜在表示空间的列车组。通常,真实世界的形状系列具有对称性,可以定义为不改变形状本质的转换。在形状空间学习中纳入对称性的自然方式是要求将其映射到形状空间(编码器)和从形状空间(解码器)映射到相关的对称。在本文中,我们通过引入两个贡献,提出了一种在编码器和解码器中融入设备和解码器的框架:(i)适应建设通用,高效和最大富有表现力的Autorencoders的最近帧平均(FA)框架; (ii)构建自动化器等于分段欧几里德运动的分段应用于形状的不同部分。据我们所知,这是第一个完全分段的欧几里德的欧洲等自动化器建设。培训我们的框架很简单:它使用标准的重建损失,不需要引入新的损失。我们的体系结构由标准(骨干网)架构构成,具有适当的帧平均,使其成为等效。使用隐式的神经表示,在两个刚性形状数据集上测试我们的框架,并使用基于网格的神经网络的铰接形状数据集显示出技术的概括,以通过大边缘改善相关基线。特别地,我们的方法表明了概括铰接姿势的概括性的显着改善。
translated by 谷歌翻译
从低级视觉理论中出现,可说的过滤器在先前的卷积神经网络上的工作中发现了对应物,等同于僵化的转换。在我们的工作中,我们提出了一种基于球形决策表面的神经元组成的基于馈送的可转向学习方法,并在点云上运行。这种球形神经元是通过欧几里得空间的共形嵌入来获得的,最近在点集的学习表示中被重新审视。为了关注3D几何形状,我们利用球形神经元的等轴测特性,并得出3D可识别性约束。在训练球形神经元以在规范方向上分类点云之后,我们使用四面体基础来使神经元四倍,并构建旋转 - 等级的球形滤波器库。然后,我们应用派生的约束来插值过滤器库输出,从而获得旋转不变的网络。最后,我们使用合成点集和现实世界3D骨架数据来验证我们的理论发现。该代码可在https://github.com/pavlo-melnyk/steerable-3d-neurons上找到。
translated by 谷歌翻译
合并对称性可以通过定义通过转换相关的数据样本的等效类别来导致高度数据效率和可推广的模型。但是,表征转换如何在输入数据上作用通常很困难,从而限制了模型模型的适用性。我们提出了编码输入空间(例如图像)的学习对称嵌入网络(SENS),我们不知道转换的效果(例如旋转),以在这些操作下以已知方式转换的特征空间。可以通过模棱两可的任务网络端对端训练该网络,以学习明确的对称表示。我们在具有3种不同形式的对称形式的模棱两可的过渡模型的背景下验证了这种方法。我们的实验表明,SENS有助于将模棱两可的网络应用于具有复杂对称表示的数据。此外,相对于全等级和非等价基线的准确性和泛化可以提高准确性和概括。
translated by 谷歌翻译
包括协调性信息,例如位置,力,速度或旋转在计算物理和化学中的许多任务中是重要的。我们介绍了概括了等级图形网络的可控e(3)的等值图形神经网络(Segnns),使得节点和边缘属性不限于不变的标量,而是可以包含相协同信息,例如矢量或张量。该模型由可操纵的MLP组成,能够在消息和更新功能中包含几何和物理信息。通过可操纵节点属性的定义,MLP提供了一种新的Activation函数,以便与可转向功能字段一般使用。我们讨论我们的镜头通过等级的非线性卷曲镜头讨论我们的相关工作,进一步允许我们引脚点点的成功组件:非线性消息聚集在经典线性(可操纵)点卷积上改善;可操纵的消息在最近发送不变性消息的最近的等价图形网络上。我们展示了我们对计算物理学和化学的若干任务的方法的有效性,并提供了广泛的消融研究。
translated by 谷歌翻译
建模分子势能表面在科学中至关重要。图神经网络在该领域表现出了巨大的成功,尤其是那些使用旋转等级表示的人。但是,他们要么患有复杂的数学形式,要么缺乏理论支持和设计原则。为了避免使用模棱两可的表示,我们引入了一种新型的本地框架方法来分子表示学习并分析其表现力。借助框架上的框架和模棱两可的向量的投影,GNN可以将原子的局部环境映射到标量表示。也可以在框架上投影在本地环境中传递消息。我们进一步分析了何时以及如何构建此类本地框架。我们证明,当局部环境没有对称性时,局部框架总是存在的,就像分子动力学模拟中一样。对于对称分子,尽管只能构建退化框架,但我们发现,由于自由度降低,在某些常见情况下,局部框架方法仍可能达到高表达能力。仅使用标量表示,我们可以采用现有的简单和强大的GNN体系结构。我们的模型在实验中的表现优于一系列最先进的基线。更简单的体系结构也可以提高更高的可扩展性。与最快的基线相比,我们的模型仅需30%的推理时间。
translated by 谷歌翻译
线性神经网络层的模棱两可。在这项工作中,我们放宽了肩variance条件,只有在投影范围内才是真实的。特别是,我们研究了投射性和普通的肩那样的关系,并表明对于重要的例子,这些问题实际上是等效的。3D中的旋转组在投影平面上投影起作用。在设计用于过滤2D-2D对应的网络时,我们在实验上研究了旋转肩位的实际重要性。完全模型的模型表现不佳,虽然简单地增加了不变的特征,从而在强大的基线产量中得到了改善,但这似乎并不是由于改善的均衡性。
translated by 谷歌翻译
我们提出了一种新颖的机器学习体系结构,双光谱神经网络(BNNS),用于学习数据的数据表示,这些数据是对定义信号的空间中组的行为不变的。该模型结合了双光谱的ANSATZ,这是一个完整的分析定义的组不变的,也就是说,它保留了所有信号结构,同时仅删除了由于组动作而造成的变化。在这里,我们证明了BNN能够在数据中发现任意的交换群体结构,并且训练有素的模型学习了组的不可减至表示,从而可以恢复组Cayley表。值得注意的是,受过训练的网络学会了对这些组的双偏见,因此具有分析对象的稳健性,完整性和通用性。
translated by 谷歌翻译
The field of geometric deep learning has had a profound impact on the development of innovative and powerful graph neural network architectures. Disciplines such as computer vision and computational biology have benefited significantly from such methodological advances, which has led to breakthroughs in scientific domains such as protein structure prediction and design. In this work, we introduce GCPNet, a new geometry-complete, SE(3)-equivariant graph neural network designed for 3D graph representation learning. We demonstrate the state-of-the-art utility and expressiveness of our method on six independent datasets designed for three distinct geometric tasks: protein-ligand binding affinity prediction, protein structure ranking, and Newtonian many-body systems modeling. Our results suggest that GCPNet is a powerful, general method for capturing complex geometric and physical interactions within 3D graphs for downstream prediction tasks. The source code, data, and instructions to train new models or reproduce our results are freely available on GitHub.
translated by 谷歌翻译
本文提出了一种新的点云卷积结构,该结构学习了SE(3) - 等级功能。与现有的SE(3) - 等级网络相比,我们的设计轻巧,简单且灵活,可以合并到一般的点云学习网络中。我们通过为特征地图选择一个非常规域,在模型的复杂性和容量之间取得平衡。我们通过正确离散$ \ mathbb {r}^3 $来完全利用旋转对称性来进一步减少计算负载。此外,我们采用置换层从其商空间中恢复完整的SE(3)组。实验表明,我们的方法在各种任务中实现了可比或卓越的性能,同时消耗的内存和运行速度要比现有工作更快。所提出的方法可以在基于点云的各种实用应用中促进模棱两可的特征学习,并激发现实世界应用的Equivariant特征学习的未来发展。
translated by 谷歌翻译
在本文中,我们涉及在2D点云数据上的旋转设备。我们描述了一种特定的功能,能够近似任何连续旋转等级和置换不变函数。基于这一结果,我们提出了一种新的神经网络架构,用于处理2D点云,我们证明其普遍性地用于近似呈现这些对称的功能。我们还展示了如何扩展架构以接受一组2D-2D对应关系作为Indata,同时保持类似的标准性属性。关于立体视觉中必需基质的估计的实验。
translated by 谷歌翻译
我们考虑一拍概率解码器,该解码器在分布上映射到集合或图形之前的矢量形状。这些功能可以集成到变分性自动化器(VAE),生成的对抗网络(GAN)或标准化流动中,并在药物发现中具有重要应用。设置和图形生成最常通过生成点(有时是边缘权重)i.i.d.从正态分布,使用变压器层或图形神经网络处理它们以及先前的向量。该架构旨在产生可交换的分布(集合的所有排列同样可能),但由于I.I.D的随机性,难以训练。一代。我们提出了一种新的对抗性定义,并表明,VAES和GAN中的交换性实际上是不必要的。然后,我们引入TOP-N,一个确定性,不可交换的集合创建机制,该创建机制学会从培训参考集中选择最相关的点。 Top-n可以替换i.i.d.在任何VAE或GaN中生成 - 它更容易训练,更好地捕获数据中的复杂依赖关系。 Top-n优于I.I.D在SetMnist重建时生成15%,生成较近合成分子数据集的真正分布的34%的集合,并且能够在经典QM9数据集上培训时产生更多样化的分子。随着一次性生成的改进基础,我们的算法有助于设计更有效的分子生成方法。
translated by 谷歌翻译
我们如何获得世界模型,这些模型在什么以及我们的行动如何影响它方面都在终止代表外界?我们可以通过与世界互动而获得此类模型,并且我们是否可以说明数学逃亡者与他们与脑海中存在的假设现实的关系?随着机器学习不仅朝着包含观察性的代表性,而且介入介入知识的趋势,我们使用代表学习和小组理论的工具研究了这些问题。在假设我们的执行者对世界上作用的假设,我们提出了学习的方法,不仅要学习感官信息的内部表示,而且还以与世界上的行动和过渡相一致的方式来修改我们的感觉表示的行为。我们使用配备有线性作用在其潜在空间上的组表示的自动编码器,该空间对2步重建进行了训练,例如在组表示上执行合适的同构属性。与现有工作相比,我们的方法对组表示的假设更少,并且代理可以从组中采样的转换。我们从理论上激励我们的方法,并从经验上证明它可以学习群体和环境拓扑的正确表示。我们还将其在轨迹预测中的性能与以前的方法进行比较。
translated by 谷歌翻译
事实证明,与对称性的对称性在深度学习研究中是一种强大的归纳偏见。关于网格处理的最新著作集中在各种天然对称性上,包括翻译,旋转,缩放,节点排列和仪表变换。迄今为止,没有现有的体系结构与所有这些转换都不相同。在本文中,我们提出了一个基于注意力的网格数据的架构,该体系结构与上述所有转换相似。我们的管道依赖于相对切向特征的使用:一种简单,有效,等效性的替代品,可作为输入作为输入。有关浮士德和TOSCA数据集的实验证实,我们提出的架构在这些基准测试中的性能提高了,并且确实是对各种本地/全球转换的均等,因此具有强大的功能。
translated by 谷歌翻译
我们在从傅立叶角度得出的同质空间上引入了一个统一的框架。我们解决了卷积层之前和之后的特征场的情况。我们通过利用提起的特征场的傅立叶系数的稀疏性来提出通过傅立叶域的统一推导。当同质空间的稳定子亚组是一个紧凑的谎言组时,稀疏性就会出现。我们进一步通过元素定位元素非线性引入了一种激活方法,并通过均等卷积抬起并投射回现场。我们表明,其他将特征视为稳定器亚组中傅立叶系数的方法是我们激活的特殊情况。$ SO(3)$和$ SE(3)$进行的实验显示了球形矢量场回归,点云分类和分子完成中的最新性能。
translated by 谷歌翻译
许多应用程序需要神经网络的鲁棒性或理想的不变性,以使输入数据的某些转换。最常见的是,通过使用对抗性培训或定义包括设计所需不变性的网络体系结构来解决此要求。在这项工作中,我们提出了一种方法,使网络体系结构通过基于固定标准从(可能连续的)轨道中选择一个元素,从而使网络体系结构相对于小组操作证明是不变的。简而言之,我们打算在将数据馈送到实际网络之前“撤消”任何可能的转换。此外,我们凭经验分析了通过训练或体系结构结合不变性的不同方法的特性,并在鲁棒性和计算效率方面证明了我们方法的优势。特别是,我们研究了图像旋转(可以持续到离散化工件)以及3D点云分类的可证明的方向和缩放不变性方面的鲁棒性。
translated by 谷歌翻译
分子模拟的粗粒度(CG)通过将选定的原子分组为伪珠并大幅加速模拟来简化粒子的表示。但是,这种CG程序会导致信息损失,从而使准确的背景映射,即从CG坐标恢复细粒度(FG)坐标,这是一个长期存在的挑战。受生成模型和e象网络的最新进展的启发,我们提出了一个新型模型,该模型严格嵌入了背态转换的重要概率性质和几何一致性要求。我们的模型将FG的不确定性编码为不变的潜在空间,并通过Equivariant卷积将其解码为FG几何形状。为了标准化该领域的评估,我们根据分子动力学轨迹提供了三个综合基准。实验表明,我们的方法始终恢复更现实的结构,并以显着的边距胜过现有的数据驱动方法。
translated by 谷歌翻译