本文提出了一种新的点云卷积结构,该结构学习了SE(3) - 等级功能。与现有的SE(3) - 等级网络相比,我们的设计轻巧,简单且灵活,可以合并到一般的点云学习网络中。我们通过为特征地图选择一个非常规域,在模型的复杂性和容量之间取得平衡。我们通过正确离散$ \ mathbb {r}^3 $来完全利用旋转对称性来进一步减少计算负载。此外,我们采用置换层从其商空间中恢复完整的SE(3)组。实验表明,我们的方法在各种任务中实现了可比或卓越的性能,同时消耗的内存和运行速度要比现有工作更快。所提出的方法可以在基于点云的各种实用应用中促进模棱两可的特征学习,并激发现实世界应用的Equivariant特征学习的未来发展。
translated by 谷歌翻译
本文提出了一种可对应的点云旋转登记的方法。我们学习为每个点云嵌入保留所以(3)-equivariance属性的特征空间中的嵌入,通过最近的Quifariant神经网络的开发启用。所提出的形状登记方法通过用隐含形状模型结合等分性的特征学习来实现三个主要优点。首先,由于网络架构中类似于PointNet的网络体系结构中的置换不变性,因此删除了数据关联的必要性。其次,由于SO(3)的性能,可以使用喇叭的方法以闭合形式来解决特征空间中的注册。第三,由于注册和隐含形状重建的联合培训,注册对点云中的噪声强大。实验结果显示出优异的性能与现有的无对应的深层登记方法相比。
translated by 谷歌翻译
基于2D图像的3D对象的推理由于从不同方向查看对象引起的外观差异很大,因此具有挑战性。理想情况下,我们的模型将是对物体姿势变化的不变或等效的。不幸的是,对于2D图像输入,这通常是不可能的,因为我们没有一个先验模型,即在平面外对象旋转下如何改变图像。唯一的$ \ mathrm {so}(3)$ - 当前存在的模型需要点云输入而不是2D图像。在本文中,我们提出了一种基于Icosahedral群卷积的新型模型体系结构,即通过将输入图像投影到iCosahedron上,以$ \ mathrm {so(3)} $中的理由。由于此投影,该模型大致与$ \ mathrm {so}(3)$中的旋转大致相当。我们将此模型应用于对象构成估计任务,并发现它的表现优于合理的基准。
translated by 谷歌翻译
Steerable convolutional neural networks (CNNs) provide a general framework for building neural networks equivariant to translations and other transformations belonging to an origin-preserving group $G$, such as reflections and rotations. They rely on standard convolutions with $G$-steerable kernels obtained by analytically solving the group-specific equivariance constraint imposed onto the kernel space. As the solution is tailored to a particular group $G$, the implementation of a kernel basis does not generalize to other symmetry transformations, which complicates the development of group equivariant models. We propose using implicit neural representation via multi-layer perceptrons (MLPs) to parameterize $G$-steerable kernels. The resulting framework offers a simple and flexible way to implement Steerable CNNs and generalizes to any group $G$ for which a $G$-equivariant MLP can be built. We apply our method to point cloud (ModelNet-40) and molecular data (QM9) and demonstrate a significant improvement in performance compared to standard Steerable CNNs.
translated by 谷歌翻译
在本文中,我们提出了一个新颖的基于本地描述符的框架,称您仅假设一次(Yoho),以注册两个未对齐的点云。与大多数依赖脆弱的局部参考框架获得旋转不变性的现有局部描述符相反,拟议的描述符通过群体epoivariant特征学习的最新技术实现了旋转不变性,这为点密度和噪声带来了更大的鲁棒性。同时,Yoho中的描述符也有一个旋转模棱两可的部分,这使我们能够从仅一个对应假设估算注册。这样的属性减少了可行变换的搜索空间,因此大大提高了Yoho的准确性和效率。广泛的实验表明,Yoho在四个广泛使用的数据集(3DMATCH/3DLOMATCH数据集,ETH数据集和WHU-TLS数据集)上实现了卓越的性能。更多详细信息在我们的项目页面中显示:https://hpwang-whu.github.io/yoho/。
translated by 谷歌翻译
我们研究小组对称性如何帮助提高端到端可区分计划算法的数据效率和概括,特别是在2D机器人路径计划问题上:导航和操纵。我们首先从价值迭代网络(VIN)正式使用卷积网络进行路径计划,因为它避免了明确构建等价类别并启用端到端计划。然后,我们证明价值迭代可以始终表示为(2D)路径计划的某种卷积形式,并将结果范式命名为对称范围(SYMPLAN)。在实施中,我们使用可进入的卷积网络来合并对称性。我们在导航和操纵方面的算法,具有给定或学习的地图,提高了与非等级同行VIN和GPPN相比,大幅度利润的训练效率和概括性能。
translated by 谷歌翻译
模棱两可的神经网络,其隐藏的特征根据G组作用于数据的表示,表现出训练效率和提高的概括性能。在这项工作中,我们将群体不变和模棱两可的表示学习扩展到无监督的深度学习领域。我们根据编码器框架提出了一种通用学习策略,其中潜在表示以不变的术语和模棱两可的组动作组件分开。关键的想法是,网络学会通过学习预测适当的小组操作来对齐输入和输出姿势以解决重建任务的适当组动作来编码和从组不变表示形式进行编码和解码数据。我们在Equivariant编码器上得出必要的条件,并提出了对任何G(离散且连续的)有效的构造。我们明确描述了我们的旋转,翻译和排列的构造。我们在采用不同网络体系结构的各种数据类型的各种实验中测试了方法的有效性和鲁棒性。
translated by 谷歌翻译
The principle of equivariance to symmetry transformations enables a theoretically grounded approach to neural network architecture design. Equivariant networks have shown excellent performance and data efficiency on vision and medical imaging problems that exhibit symmetries. Here we show how this principle can be extended beyond global symmetries to local gauge transformations. This enables the development of a very general class of convolutional neural networks on manifolds that depend only on the intrinsic geometry, and which includes many popular methods from equivariant and geometric deep learning.We implement gauge equivariant CNNs for signals defined on the surface of the icosahedron, which provides a reasonable approximation of the sphere. By choosing to work with this very regular manifold, we are able to implement the gauge equivariant convolution using a single conv2d call, making it a highly scalable and practical alternative to Spherical CNNs. Using this method, we demonstrate substantial improvements over previous methods on the task of segmenting omnidirectional images and global climate patterns.
translated by 谷歌翻译
定义网格上卷积的常用方法是将它们作为图形解释并应用图形卷积网络(GCN)。这种GCNS利用各向同性核,因此对顶点的相对取向不敏感,从而对整个网格的几何形状。我们提出了规范的等分性网状CNN,它概括了GCNS施加各向异性仪表等级核。由于产生的特征携带方向信息,我们引入了通过网格边缘并行传输特征来定义的几何消息传递方案。我们的实验验证了常规GCN和其他方法的提出模型的显着提高的表达性。
translated by 谷歌翻译
Recent progress in geometric computer vision has shown significant advances in reconstruction and novel view rendering from multiple views by capturing the scene as a neural radiance field. Such approaches have changed the paradigm of reconstruction but need a plethora of views and do not make use of object shape priors. On the other hand, deep learning has shown how to use priors in order to infer shape from single images. Such approaches, though, require that the object is reconstructed in a canonical pose or assume that object pose is known during training. In this paper, we address the problem of how to compute equivariant priors for reconstruction from a few images, given the relative poses of the cameras. Our proposed reconstruction is $SE(3)$-gauge equivariant, meaning that it is equivariant to the choice of world frame. To achieve this, we make two novel contributions to light field processing: we define light field convolution and we show how it can be approximated by intra-view $SE(2)$ convolutions because the original light field convolution is computationally and memory-wise intractable; we design a map from the light field to $\mathbb{R}^3$ that is equivariant to the transformation of the world frame and to the rotation of the views. We demonstrate equivariance by obtaining robust results in roto-translated datasets without performing transformation augmentation.
translated by 谷歌翻译
A wide range of techniques have been proposed in recent years for designing neural networks for 3D data that are equivariant under rotation and translation of the input. Most approaches for equivariance under the Euclidean group $\mathrm{SE}(3)$ of rotations and translations fall within one of the two major categories. The first category consists of methods that use $\mathrm{SE}(3)$-convolution which generalizes classical $\mathbb{R}^3$-convolution on signals over $\mathrm{SE}(3)$. Alternatively, it is possible to use \textit{steerable convolution} which achieves $\mathrm{SE}(3)$-equivariance by imposing constraints on $\mathbb{R}^3$-convolution of tensor fields. It is known by specialists in the field that the two approaches are equivalent, with steerable convolution being the Fourier transform of $\mathrm{SE}(3)$ convolution. Unfortunately, these results are not widely known and moreover the exact relations between deep learning architectures built upon these two approaches have not been precisely described in the literature on equivariant deep learning. In this work we provide an in-depth analysis of both methods and their equivalence and relate the two constructions to multiview convolutional networks. Furthermore, we provide theoretical justifications of separability of $\mathrm{SE}(3)$ group convolution, which explain the applicability and success of some recent approaches. Finally, we express different methods using a single coherent formalism and provide explicit formulas that relate the kernels learned by different methods. In this way, our work helps to unify different previously-proposed techniques for achieving roto-translational equivariance, and helps to shed light on both the utility and precise differences between various alternatives. We also derive new TFN non-linearities from our equivalence principle and test them on practical benchmark datasets.
translated by 谷歌翻译
We introduce Group equivariant Convolutional Neural Networks (G-CNNs), a natural generalization of convolutional neural networks that reduces sample complexity by exploiting symmetries. G-CNNs use G-convolutions, a new type of layer that enjoys a substantially higher degree of weight sharing than regular convolution layers. G-convolutions increase the expressive capacity of the network without increasing the number of parameters. Group convolution layers are easy to use and can be implemented with negligible computational overhead for discrete groups generated by translations, reflections and rotations. G-CNNs achieve state of the art results on CI-FAR10 and rotated MNIST.
translated by 谷歌翻译
点云分析没有姿势前导者在真实应用中非常具有挑战性,因为点云的方向往往是未知的。在本文中,我们提出了一个全新的点集学习框架prin,即点亮旋转不变网络,专注于点云分析中的旋转不变特征提取。我们通过密度意识的自适应采样构建球形信号,以处理球形空间中的扭曲点分布。提出了球形Voxel卷积和点重新采样以提取每个点的旋转不变特征。此外,我们将Prin扩展到称为Sprin的稀疏版本,直接在稀疏点云上运行。 Prin和Sprin都可以应用于从对象分类,部分分割到3D特征匹配和标签对齐的任务。结果表明,在随机旋转点云的数据集上,Sprin比无任何数据增强的最先进方法表现出更好的性能。我们还为我们的方法提供了彻底的理论证明和分析,以实现我们的方法实现的点明智的旋转不变性。我们的代码可在https://github.com/qq456cvb/sprin上找到。
translated by 谷歌翻译
可进入的模型可以通过在表示理论和特征领域的语言中制定均衡性要求来提供非常通用和灵活的均衡性,这对许多视觉任务都是有效的。但是,由于3D旋转的数学更复杂,因此在2D情况下得出3D旋转模型要困难得多。在这项工作中,我们采用部分差分运算符(PDOS)来模型3D滤波器,并得出了通用的可检测3D CNN,称为PDO-S3DCNNS。我们证明,模棱两可的过滤器受线性约束的约束,可以在各种条件下有效地解决。据我们所知,PDO-S3DCNNS是3D旋转的最通用的CNN,因为它们涵盖了所有$ SO(3)$及其表示的所有常见子组,而现有方法只能应用于特定的组和特定组和表示。广泛的实验表明,我们的模型可以很好地保留在离散域中的均衡性,并且在SHREC'17检索和ISBI 2012分割任务上的表现都超过了以前的网络复杂性。
translated by 谷歌翻译
作为SE(3)的基本组成部分 - Quivariant的深度特色学习,可转向卷积最近展示了其3D语义分析的优势。然而,优点由昂贵的体积数据上的昂贵计算带来,这可以防止其实际用途,以便有效地处理固有的稀疏的3D数据。在本文中,我们提出了一种新颖的稀疏转向卷积(SS-Char)设计,以解决缺点; SS-DIM大大加快了稀疏张量的可操纵卷积,同时严格保留了SE(3)的性质。基于SS-CONV,我们提出了一种用于精确估计对象姿势的一般管道,其中一个关键设计是一种特征转向模块,其具有SE(3)的完全优势,并且能够进行高效的姿势改进。为了验证我们的设计,我们对三个对象语义分析的三个任务进行了彻底的实验,包括实例级别6D姿势估计,类别级别6D姿势和大小估计,以及类别级6D姿态跟踪。我们基于SS-CONV的提议管道优于三个任务评估的几乎所有指标上的现有方法。消融研究还在准确性和效率方面展示了我们的SS-CONVES对替代卷积的优越性。我们的代码在https://github.com/gorilla-lab-scut/ss-conv公开发布。
translated by 谷歌翻译
在3D点云上的应用程序越来越需要效率和鲁棒性,在自动驾驶和机器人技术等场景中无处不在使用边缘设备,这通常需要实时和可靠的响应。该论文通过设计一个通用框架来应对挑战,以构建具有(3)均衡和网络二元化的3D学习体系结构。然而,模棱两可的网络和二元化的幼稚组合会导致优化的计算效率或几何歧义。我们建议在网络中同时找到标量和向量特征,以避免这两种情况。确切地说,标量特征的存在使网络的主要部分是可动的,而矢量特征则可以保留丰富的结构信息并确保SO(3)均衡。提出的方法可以应用于PointNet和DGCNN等一般骨干。同时,对ModelNet40,Shapenet和现实世界数据集ScanObjectnn进行的实验表明,该方法在效率,旋转稳健性和准确性之间取决于巨大的权衡。这些代码可在https://github.com/zhuoinoulu/svnet上找到。
translated by 谷歌翻译
我们在从傅立叶角度得出的同质空间上引入了一个统一的框架。我们解决了卷积层之前和之后的特征场的情况。我们通过利用提起的特征场的傅立叶系数的稀疏性来提出通过傅立叶域的统一推导。当同质空间的稳定子亚组是一个紧凑的谎言组时,稀疏性就会出现。我们进一步通过元素定位元素非线性引入了一种激活方法,并通过均等卷积抬起并投射回现场。我们表明,其他将特征视为稳定器亚组中傅立叶系数的方法是我们激活的特殊情况。$ SO(3)$和$ SE(3)$进行的实验显示了球形矢量场回归,点云分类和分子完成中的最新性能。
translated by 谷歌翻译
Translating or rotating an input image should not affect the results of many computer vision tasks. Convolutional neural networks (CNNs) are already translation equivariant: input image translations produce proportionate feature map translations. This is not the case for rotations. Global rotation equivariance is typically sought through data augmentation, but patch-wise equivariance is more difficult. We present Harmonic Networks or H-Nets, a CNN exhibiting equivariance to patch-wise translation and 360-rotation. We achieve this by replacing regular CNN filters with circular harmonics, returning a maximal response and orientation for every receptive field patch.H-Nets use a rich, parameter-efficient and fixed computational complexity representation, and we show that deep feature maps within the network encode complicated rotational invariants. We demonstrate that our layers are general enough to be used in conjunction with the latest architectures and techniques, such as deep supervision and batch normalization. We also achieve state-of-the-art classification on rotated-MNIST, and competitive results on other benchmark challenges.
translated by 谷歌翻译
许多应用程序需要神经网络的鲁棒性或理想的不变性,以使输入数据的某些转换。最常见的是,通过使用对抗性培训或定义包括设计所需不变性的网络体系结构来解决此要求。在这项工作中,我们提出了一种方法,使网络体系结构通过基于固定标准从(可能连续的)轨道中选择一个元素,从而使网络体系结构相对于小组操作证明是不变的。简而言之,我们打算在将数据馈送到实际网络之前“撤消”任何可能的转换。此外,我们凭经验分析了通过训练或体系结构结合不变性的不同方法的特性,并在鲁棒性和计算效率方面证明了我们方法的优势。特别是,我们研究了图像旋转(可以持续到离散化工件)以及3D点云分类的可证明的方向和缩放不变性方面的鲁棒性。
translated by 谷歌翻译
由于其在翻译下的增强/不变性,卷积网络成功。然而,在坐标系的旋转取向不会影响数据的含义(例如对象分类)的情况下,诸如图像,卷,形状或点云的可旋转数据需要在旋转下的增强/不变性处理。另一方面,在旋转很重要的情况下是必要的估计/处理旋转(例如运动估计)。最近在所有这些方面的方法和理论方面取得了进展。在这里,我们提供了2D和3D旋转(以及翻译)的现有方法的概述,以及识别它们之间的共性和链接。
translated by 谷歌翻译