将对称性作为归纳偏置纳入神经网络体系结构已导致动态建模的概括,数据效率和身体一致性的提高。诸如CNN或e夫神经网络之类的方法使用重量绑定来强制执行对称性,例如偏移不变性或旋转率。但是,尽管物理定律遵守了许多对称性,但实际动力学数据很少符合严格的数学对称性,这是由于嘈杂或不完整的数据或基础动力学系统中的对称性破坏特征。我们探索近似模棱两可的网络,这些网络偏向于保存对称性,但并非严格限制这样做。通过放松的均衡约束,我们发现我们的模型可以胜过两个基线,而在模拟的湍流域和现实世界中的多流射流流中都没有对称性偏差和基线,并且具有过度严格的对称性。
translated by 谷歌翻译
建设深入学习系统之间通常有足够刺激现实的细微差别的深入学习系统之间的权衡,并具有良好的感应偏差以获得高效学习。我们将残留的途径(RPPS)引入了将硬建筑限制转换为软前沿的方法,引导模型朝向结构化解决方案,同时保留捕获额外复杂性的能力。使用RPPS,我们用归纳偏差构建具有协调的归纳偏差,但不限制灵活性。我们表明RPPS对近似或错过的对称性有弹性,并且即使在对称性精确时也与完全约束的模型有效。我们展示RPP与动态系统,表格数据和加强学习的广泛适用性。在Mujoco Locomotion任务中,其中联系力和定向奖励违反了严格的标准性假设,RPP优于无基线的无模型RL代理,并且还改善了基于模型的RL的学习过渡模型。
translated by 谷歌翻译
生成建模旨在揭示产生观察到的数据的潜在因素,这些数据通常可以被建模为自然对称性,这些对称性是通过不变和对某些转型定律等效的表现出来的。但是,当前代表这些对称性的方法是在需要构建模棱两可矢量场的连续正式化流中所掩盖的 - 抑制了它们在常规的高维生成建模域(如自然图像)中的简单应用。在本文中,我们专注于使用离散层建立归一化流量。首先,我们从理论上证明了对紧凑空间的紧凑型组的模棱两可的图。我们进一步介绍了三个新的品牌流:$ g $ - 剩余的流量,$ g $ - 耦合流量和$ g $ - inverse自动回旋的回旋流量,可以提升经典的残留剩余,耦合和反向自动性流量,并带有等效的地图, $。从某种意义上说,我们证明$ g $ equivariant的差异性可以通过$ g $ - $ residual流量映射,我们的$ g $ - 剩余流量也很普遍。最后,我们首次在诸如CIFAR-10之类的图像数据集中对我们的理论见解进行了补充,并显示出$ G $ equivariant有限的有限流量,从而提高了数据效率,更快的收敛性和提高的可能性估计。
translated by 谷歌翻译
合并对称性可以通过定义通过转换相关的数据样本的等效类别来导致高度数据效率和可推广的模型。但是,表征转换如何在输入数据上作用通常很困难,从而限制了模型模型的适用性。我们提出了编码输入空间(例如图像)的学习对称嵌入网络(SENS),我们不知道转换的效果(例如旋转),以在这些操作下以已知方式转换的特征空间。可以通过模棱两可的任务网络端对端训练该网络,以学习明确的对称表示。我们在具有3种不同形式的对称形式的模棱两可的过渡模型的背景下验证了这种方法。我们的实验表明,SENS有助于将模棱两可的网络应用于具有复杂对称表示的数据。此外,相对于全等级和非等价基线的准确性和泛化可以提高准确性和概括。
translated by 谷歌翻译
We introduce Group equivariant Convolutional Neural Networks (G-CNNs), a natural generalization of convolutional neural networks that reduces sample complexity by exploiting symmetries. G-CNNs use G-convolutions, a new type of layer that enjoys a substantially higher degree of weight sharing than regular convolution layers. G-convolutions increase the expressive capacity of the network without increasing the number of parameters. Group convolution layers are easy to use and can be implemented with negligible computational overhead for discrete groups generated by translations, reflections and rotations. G-CNNs achieve state of the art results on CI-FAR10 and rotated MNIST.
translated by 谷歌翻译
在动态系统中利用对称性是改善深度学习概括的强大方法。该模型学会对转换是不变的,因此对于分配转移更为强大。数据增强和模棱两可的网络是将对称性注入学习的两种主要方法。但是,它们在改善概括中的确切作用尚不清楚。在这项工作中,我们得出了数据增强和模棱两可网络的概括范围,以表征它们在统一框架中学习的影响。与大多数先前的I.I.D.不同的理论不同设置,我们专注于具有复杂时间依赖性的非平稳动力学预测。
translated by 谷歌翻译
Incorporating equivariance to symmetry groups as a constraint during neural network training can improve performance and generalization for tasks exhibiting those symmetries, but such symmetries are often not perfectly nor explicitly present. This motivates algorithmically optimizing the architectural constraints imposed by equivariance. We propose the equivariance relaxation morphism, which preserves functionality while reparameterizing a group equivariant layer to operate with equivariance constraints on a subgroup, as well as the [G]-mixed equivariant layer, which mixes layers constrained to different groups to enable within-layer equivariance optimization. We further present evolutionary and differentiable neural architecture search (NAS) algorithms that utilize these mechanisms respectively for equivariance-aware architectural optimization. Experiments across a variety of datasets show the benefit of dynamically constrained equivariance to find effective architectures with approximate equivariance.
translated by 谷歌翻译
从早期图像处理到现代计算成像,成功的模型和算法都依赖于自然信号的基本属性:对称性。在这里,对称是指信号集的不变性属性,例如翻译,旋转或缩放等转换。对称性也可以以模棱两可的形式纳入深度神经网络中,从而可以进行更多的数据效率学习。虽然近年来端到端的图像分类网络的设计方面取得了重要进展,但计算成像引入了对等效网络解决方案的独特挑战,因为我们通常只通过一些嘈杂的不良反向操作员观察图像,可能不是均等的。我们回顾了现象成像的新兴领域,并展示它如何提供改进的概括和新成像机会。在此过程中,我们展示了采集物理学与小组动作之间的相互作用,以及与迭代重建,盲目的压缩感应和自我监督学习之间的联系。
translated by 谷歌翻译
部分微分方程(PDE)参见在科学和工程中的广泛使用,以将物理过程的模拟描述为标量和向量场随着时间的推移相互作用和协调。由于其标准解决方案方法的计算昂贵性质,神经PDE代理已成为加速这些模拟的积极研究主题。但是,当前的方法并未明确考虑不同字段及其内部组件之间的关系,这些关系通常是相关的。查看此类相关场的时间演变通过多活动场的镜头,使我们能够克服这些局限性。多胎场由标量,矢量以及高阶组成部分组成,例如双分数和三分分射线。 Clifford代数可以描述它们的代数特性,例如乘法,加法和其他算术操作。据我们所知,本文介绍了此类多人表示的首次使用以及Clifford的卷积和Clifford Fourier在深度学习的背景下的转换。由此产生的Clifford神经层普遍适用,并将在流体动力学,天气预报和一般物理系统的建模领域中直接使用。我们通过经验评估克利福德神经层的好处,通过在二维Navier-Stokes和天气建模任务以及三维Maxwell方程式上取代其Clifford对应物中常见的神经PDE代理中的卷积和傅立叶操作。克利福德神经层始终提高测试神经PDE代理的概括能力。
translated by 谷歌翻译
现有的等分性神经网络需要先前了解对称组和连续组的离散化。我们建议使用Lie代数(无限发电机)而不是谎言群体。我们的模型,Lie代数卷积网络(L-Chir)可以自动发现对称性,并不需要该组的离散化。我们展示L-CONC可以作为构建任何组的建筑块,以构建任何组的馈电架构。CNN和图表卷积网络都可以用适当的组表示为L-DIV。我们发现L-CONC和物理学之间的直接连接:(1)组不变损失概括场理论(2)欧拉拉格朗法令方程测量鲁棒性,(3)稳定性导致保护法和挪威尔特。这些连接开辟了新的途径用于设计更多普遍等级的网络并将其应用于物理科学中的重要问题
translated by 谷歌翻译
Steerable convolutional neural networks (CNNs) provide a general framework for building neural networks equivariant to translations and other transformations belonging to an origin-preserving group $G$, such as reflections and rotations. They rely on standard convolutions with $G$-steerable kernels obtained by analytically solving the group-specific equivariance constraint imposed onto the kernel space. As the solution is tailored to a particular group $G$, the implementation of a kernel basis does not generalize to other symmetry transformations, which complicates the development of group equivariant models. We propose using implicit neural representation via multi-layer perceptrons (MLPs) to parameterize $G$-steerable kernels. The resulting framework offers a simple and flexible way to implement Steerable CNNs and generalizes to any group $G$ for which a $G$-equivariant MLP can be built. We apply our method to point cloud (ModelNet-40) and molecular data (QM9) and demonstrate a significant improvement in performance compared to standard Steerable CNNs.
translated by 谷歌翻译
基于2D图像的3D对象的推理由于从不同方向查看对象引起的外观差异很大,因此具有挑战性。理想情况下,我们的模型将是对物体姿势变化的不变或等效的。不幸的是,对于2D图像输入,这通常是不可能的,因为我们没有一个先验模型,即在平面外对象旋转下如何改变图像。唯一的$ \ mathrm {so}(3)$ - 当前存在的模型需要点云输入而不是2D图像。在本文中,我们提出了一种基于Icosahedral群卷积的新型模型体系结构,即通过将输入图像投影到iCosahedron上,以$ \ mathrm {so(3)} $中的理由。由于此投影,该模型大致与$ \ mathrm {so}(3)$中的旋转大致相当。我们将此模型应用于对象构成估计任务,并发现它的表现优于合理的基准。
translated by 谷歌翻译
Units equivariance (or units covariance) is the exact symmetry that follows from the requirement that relationships among measured quantities of physics relevance must obey self-consistent dimensional scalings. Here, we express this symmetry in terms of a (non-compact) group action, and we employ dimensional analysis and ideas from equivariant machine learning to provide a methodology for exactly units-equivariant machine learning: For any given learning task, we first construct a dimensionless version of its inputs using classic results from dimensional analysis, and then perform inference in the dimensionless space. Our approach can be used to impose units equivariance across a broad range of machine learning methods which are equivariant to rotations and other groups. We discuss the in-sample and out-of-sample prediction accuracy gains one can obtain in contexts like symbolic regression and emulation, where symmetry is important. We illustrate our approach with simple numerical examples involving dynamical systems in physics and ecology.
translated by 谷歌翻译
我们研究小组对称性如何帮助提高端到端可区分计划算法的数据效率和概括,特别是在2D机器人路径计划问题上:导航和操纵。我们首先从价值迭代网络(VIN)正式使用卷积网络进行路径计划,因为它避免了明确构建等价类别并启用端到端计划。然后,我们证明价值迭代可以始终表示为(2D)路径计划的某种卷积形式,并将结果范式命名为对称范围(SYMPLAN)。在实施中,我们使用可进入的卷积网络来合并对称性。我们在导航和操纵方面的算法,具有给定或学习的地图,提高了与非等级同行VIN和GPPN相比,大幅度利润的训练效率和概括性能。
translated by 谷歌翻译
包括协调性信息,例如位置,力,速度或旋转在计算物理和化学中的许多任务中是重要的。我们介绍了概括了等级图形网络的可控e(3)的等值图形神经网络(Segnns),使得节点和边缘属性不限于不变的标量,而是可以包含相协同信息,例如矢量或张量。该模型由可操纵的MLP组成,能够在消息和更新功能中包含几何和物理信息。通过可操纵节点属性的定义,MLP提供了一种新的Activation函数,以便与可转向功能字段一般使用。我们讨论我们的镜头通过等级的非线性卷曲镜头讨论我们的相关工作,进一步允许我们引脚点点的成功组件:非线性消息聚集在经典线性(可操纵)点卷积上改善;可操纵的消息在最近发送不变性消息的最近的等价图形网络上。我们展示了我们对计算物理学和化学的若干任务的方法的有效性,并提供了广泛的消融研究。
translated by 谷歌翻译
模棱两可的神经网络,其隐藏的特征根据G组作用于数据的表示,表现出训练效率和提高的概括性能。在这项工作中,我们将群体不变和模棱两可的表示学习扩展到无监督的深度学习领域。我们根据编码器框架提出了一种通用学习策略,其中潜在表示以不变的术语和模棱两可的组动作组件分开。关键的想法是,网络学会通过学习预测适当的小组操作来对齐输入和输出姿势以解决重建任务的适当组动作来编码和从组不变表示形式进行编码和解码数据。我们在Equivariant编码器上得出必要的条件,并提出了对任何G(离散且连续的)有效的构造。我们明确描述了我们的旋转,翻译和排列的构造。我们在采用不同网络体系结构的各种数据类型的各种实验中测试了方法的有效性和鲁棒性。
translated by 谷歌翻译
事实证明,与对称性的对称性在深度学习研究中是一种强大的归纳偏见。关于网格处理的最新著作集中在各种天然对称性上,包括翻译,旋转,缩放,节点排列和仪表变换。迄今为止,没有现有的体系结构与所有这些转换都不相同。在本文中,我们提出了一个基于注意力的网格数据的架构,该体系结构与上述所有转换相似。我们的管道依赖于相对切向特征的使用:一种简单,有效,等效性的替代品,可作为输入作为输入。有关浮士德和TOSCA数据集的实验证实,我们提出的架构在这些基准测试中的性能提高了,并且确实是对各种本地/全球转换的均等,因此具有强大的功能。
translated by 谷歌翻译
当前的深度学习模型预测与概括的斗争。它们只能在特定域中预测,并且当应用于具有不同参数,外部力或边界条件的系统时失败。我们提出了一种基于模型的元学习方法,称为dyad,可以通过将它们划分为不同的任务,从而在异质域进行概括。 Dyad有两个部分:一个编码器,可在弱监督下渗透任务的时间不变的隐藏功能,并且一个预报员可以学习整个域的共享动力学。编码器使用自适应实例归一化和自适应填充在推理过程中适应并控制预报器。从理论上讲,我们证明了此类过程的概括误差与源域中的任务相关性以及源和目标之间的域差异有关。在实验上,我们证明了我们的模型在湍流和现实海洋数据预测任务上都优于最先进的方法。
translated by 谷歌翻译
在许多实际应用(例如运动预测和3D感知)中,旋转模棱两可是理想的属性,它可以提供样本效率,更好的概括和对输入扰动的鲁棒性等好处。向量神经元(VN)是一个最近开发的框架,它通过将一维标量神经元扩展到三维“向量神经元”,提供一种简单而有效的方法来推导标准机器学习操作的旋转量表类似物。我们介绍了一种新颖的“ VN转换器”体系结构,以解决当前VN模型的几个缺点。我们的贡献是:$(i)$,我们得出了一种旋转等级的注意机制,这消除了原始矢量神经元模型所需的重型功能预处理的需求; $(ii)$我们扩展了VN框架以支持非空间属性,将这些模型的适用性扩展到现实世界数据集; $(iii)$,我们得出了一种旋转等级机制,用于多尺度减少点云的分辨率,从而大大加快了推理和训练; $(iv)$我们表明,可以使用小额折衷($ \ epsilon $ - approximate povrivariance)来获得对加速硬件的数值稳定性和培训鲁棒性的巨大改进,并且我们绑定了我们模型中对等效性侵犯的繁殖。最后,我们将VN转换器应用于3D形状分类和运动预测,并具有令人信服的结果。
translated by 谷歌翻译
我们开发了一种从2D RGB图像生成3D手网格的旋转等级模型。这保证了当手的输入图像旋转时,所生成的网格经历相应的旋转。此外,这消除了经常通过无旋转标准天例的方法产生的网格中的不希望的变形。通过构建旋转等级模型,通过考虑问题的对称性,我们减少了对非常大的数据集训练的需求,以实现良好的网格重建。编码器在$ \ mathbb {z} ^ {2} $上定义的图像,并将这些映射到组$ c_ {8} $上定义的潜在函数。我们介绍了一种新颖的向量映射函数来将以$ c_ {8} $定义的函数映射到组$ \ mathrm {so}(2)$上定义的潜在点云空间。此外,我们介绍了一种3D投影函数,它从$ \ mathrm {so}(2)$潜空间中学习3D功能。最后,我们使用$ \ mathrm {so}(3)$ arifariant解码器,以确保旋转标准。我们的旋转设备模型优于现实世界数据集的最先进方法,我们证明它可以准确地捕获在输入手的旋转下产生的网格中的形状和姿势。
translated by 谷歌翻译