合奏是一种直接,非常有效的方法,用于提高模型在分类任务上的准确性,校准和鲁棒性;然而,其成功基础的原因仍然是研究的积极领域。我们基于PFAU(2013)的偏见变化分解的扩展,以便对分类器合奏的行为产生关键的见解。为了引入偏见变化权衡的双重重新聚集,我们首先得出了典型的分类任务的非对称损失的总期望和差异的广义定律。比较条件和引导偏置/方差估计值,我们表明条件估计必定会导致不可还原误差。接下来,我们表明在双空间中结合会降低差异并使偏差不变,而标准结合可以任意影响偏见。从经验上讲,标准的结合减少偏见,使我们假设分类器的集合可能会出现很好的表现,部分原因是这种意外的减少。我们通过对最近的深度学习方法的经验分析来结束,这些方法是在超级范围上进行整体,这表明这些技术确实有利于降低偏见偏见的偏见偏见。这表明,与经典智慧相反,靶向偏见可能是分类器合奏的有希望的方向。
translated by 谷歌翻译
Several recent works find empirically that the average test error of deep neural networks can be estimated via the prediction disagreement of models, which does not require labels. In particular, Jiang et al. (2022) show for the disagreement between two separately trained networks that this `Generalization Disagreement Equality' follows from the well-calibrated nature of deep ensembles under the notion of a proposed `class-aggregated calibration.' In this reproduction, we show that the suggested theory might be impractical because a deep ensemble's calibration can deteriorate as prediction disagreement increases, which is precisely when the coupling of test error and disagreement is of interest, while labels are needed to estimate the calibration on new datasets. Further, we simplify the theoretical statements and proofs, showing them to be straightforward within a probabilistic context, unlike the original hypothesis space view employed by Jiang et al. (2022).
translated by 谷歌翻译
We introduce a tunable loss function called $\alpha$-loss, parameterized by $\alpha \in (0,\infty]$, which interpolates between the exponential loss ($\alpha = 1/2$), the log-loss ($\alpha = 1$), and the 0-1 loss ($\alpha = \infty$), for the machine learning setting of classification. Theoretically, we illustrate a fundamental connection between $\alpha$-loss and Arimoto conditional entropy, verify the classification-calibration of $\alpha$-loss in order to demonstrate asymptotic optimality via Rademacher complexity generalization techniques, and build-upon a notion called strictly local quasi-convexity in order to quantitatively characterize the optimization landscape of $\alpha$-loss. Practically, we perform class imbalance, robustness, and classification experiments on benchmark image datasets using convolutional-neural-networks. Our main practical conclusion is that certain tasks may benefit from tuning $\alpha$-loss away from log-loss ($\alpha = 1$), and to this end we provide simple heuristics for the practitioner. In particular, navigating the $\alpha$ hyperparameter can readily provide superior model robustness to label flips ($\alpha > 1$) and sensitivity to imbalanced classes ($\alpha < 1$).
translated by 谷歌翻译
近年来目睹了采用灵活的机械学习模型进行乐器变量(IV)回归的兴趣,但仍然缺乏不确定性量化方法的发展。在这项工作中,我们为IV次数回归提出了一种新的Quasi-Bayesian程序,建立了最近开发的核化IV模型和IV回归的双/极小配方。我们通过在$ l_2 $和sobolev规范中建立最低限度的最佳收缩率,并讨论可信球的常见有效性来分析所提出的方法的频繁行为。我们进一步推出了一种可扩展的推理算法,可以扩展到与宽神经网络模型一起工作。实证评价表明,我们的方法对复杂的高维问题产生了丰富的不确定性估计。
translated by 谷歌翻译
因果推理,经济学以及更普遍的一般机器学习中的重要问题可以表示为条件力矩限制,但是估计变得具有挑战性,因为它需要解决无条件的力矩限制的连续性。以前的工作通过将广义的矩(GMM)方法扩展到连续矩限制来解决此问题。相比之下,广义经验可能性(GEL)提供了一个更通用的框架,并且与基于GMM的估计器相比,已显示出具有优惠的小样本特性。为了从机器学习的最新发展中受益,我们提供了可以利用任意模型的凝胶的功能重新重新制定。通过对所得无限尺寸优化问题的双重配方的激励,我们设计了一种实用方法并探索其渐近性能。最后,我们提供基于内核和基于神经网络的估计器实现,这些实现在两个条件矩限制问题上实现了最先进的经验绩效。
translated by 谷歌翻译
收购数据是机器学习的许多应用中的一项艰巨任务,只有一个人希望并且预期人口风险在单调上汇率增加(更好的性能)。事实证明,甚至对于最小化经验风险的最大限度的算法,甚至不令人惊讶的情况。在训练中的风险和不稳定的非单调行为表现出并出现在双重血统描述中的流行深度学习范式中。这些问题突出了目前对学习算法和泛化的理解缺乏了解。因此,追求这种行为的表征是至关重要的,这是至关重要的。在本文中,我们在弱假设下获得了一致和风险的单调算法,从而解决了一个打开问题Viering等。 2019关于如何避免风险曲线的非单调行为。我们进一步表明,风险单调性不一定以更糟糕的风险率的价格出现。为实现这一目标,我们推出了持有某些非I.I.D的独立利益的新经验伯恩斯坦的浓度不等式。鞅差异序列等进程。
translated by 谷歌翻译
我们引入了重新定性,这是一种数据依赖性的重新聚集化,将贝叶斯神经网络(BNN)转化为后部的分布,其KL对BNN对BNN的差异随着层宽度的增长而消失。重新定义图直接作用于参数,其分析简单性补充了宽BNN在功能空间中宽BNN的已知神经网络过程(NNGP)行为。利用重新定性,我们开发了马尔可夫链蒙特卡洛(MCMC)后采样算法,该算法将BNN更快地混合在一起。这与MCMC在高维度上的表现差异很差。对于完全连接和残留网络,我们观察到有效样本量高达50倍。在各个宽度上都取得了改进,并在层宽度的重新培训和标准BNN之间的边缘。
translated by 谷歌翻译
我们专注于具有单个隐藏层的特定浅神经网络,即具有$ l_2 $ normalistization的数据以及Sigmoid形状的高斯错误函数(“ ERF”)激活或高斯错误线性单元(GELU)激活。对于这些网络,我们通过Pac-Bayesian理论得出了新的泛化界限。与大多数现有的界限不同,它们适用于具有确定性或随机参数的神经网络。当网络接受Mnist和Fashion-Mnist上的香草随机梯度下降训练时,我们的界限在经验上是无效的。
translated by 谷歌翻译
独立训练的神经网络的集合是一种最新的方法,可以在深度学习中估算预测性不确定性,并且可以通过三角洲函数的混合物解释为后验分布的近似值。合奏的培训依赖于损失景观的非跨性别性和其单个成员的随机初始化,从而使后近似不受控制。本文提出了一种解决此限制的新颖和原则性的方法,最大程度地减少了函数空间中真实后验和内核密度估计器(KDE)之间的$ f $ divergence。我们从组合的角度分析了这一目标,并表明它在任何$ f $的混合组件方面都是supporular。随后,我们考虑了贪婪合奏结构的问题。从负$ f $ didivergence上的边际增益来量化后近似的改善,通过将新组件添加到KDE中得出,我们得出了集合方法的新型多样性项。我们的方法的性能在计算机视觉的分布外检测基准测试中得到了证明,该基准在多个数据集中训练的一系列架构中。我们方法的源代码可在https://github.com/oulu-imeds/greedy_ensembles_training上公开获得。
translated by 谷歌翻译
当我们扩大数据集,模型尺寸和培训时间时,深入学习方法的能力中存在越来越多的经验证据。尽管有一些关于这些资源如何调节统计能力的说法,但对它们对模型培训的计算问题的影响知之甚少。这项工作通过学习$ k $ -sparse $ n $ bits的镜头进行了探索,这是一个构成理论计算障碍的规范性问题。在这种情况下,我们发现神经网络在扩大数据集大小和运行时间时会表现出令人惊讶的相变。特别是,我们从经验上证明,通过标准培训,各种体系结构以$ n^{o(k)} $示例学习稀疏的平等,而损失(和错误)曲线在$ n^{o(k)}后突然下降。 $迭代。这些积极的结果几乎匹配已知的SQ下限,即使没有明确的稀疏性先验。我们通过理论分析阐明了这些现象的机制:我们发现性能的相变不到SGD“在黑暗中绊倒”,直到它找到了隐藏的特征集(自然算法也以$ n^中的方式运行{o(k)} $ time);取而代之的是,我们表明SGD逐渐扩大了人口梯度的傅立叶差距。
translated by 谷歌翻译
We define notions of stability for learning algorithms and show how to use these notions to derive generalization error bounds based on the empirical error and the leave-one-out error. The methods we use can be applied in the regression framework as well as in the classification one when the classifier is obtained by thresholding a real-valued function. We study the stability properties of large classes of learning algorithms such as regularization based algorithms. In particular we focus on Hilbert space regularization and Kullback-Leibler regularization. We demonstrate how to apply the results to SVM for regression and classification.1. For a qualitative discussion about sensitivity analysis with links to other resources see e.g. http://sensitivity-analysis.jrc.cec.eu.int/
translated by 谷歌翻译
当可能的许多标签是可能的时,选择单个可以导致低精度。一个常见的替代方案,称为顶级k $分类,是选择一些数字$ k $(通常约5),并返回最高分数的$ k $标签。不幸的是,对于明确的案例,$ k> 1 $太多,对于非常暧昧的情况,$ k \ leq 5 $(例如)太小。另一种明智的策略是使用一种自适应方法,其中返回的标签数量随着计算的歧义而变化,但必须平均到所有样本的某些特定的$ k $。我们表示这种替代方案 - $ k $分类。本文在平均值的含量较低的误差率时,本文正式地表征了模糊性曲线,比固定的顶级k $分类更低。此外,它为固定尺寸和自适应分类器提供了自然估计程序,并证明了它们的一致性。最后,它报告了实际图像数据集的实验,揭示了平均值的效益 - 在实践中的价格超过高度k $分类。总的来说,当含糊不清的歧义时,平均值-$ k $永远不会比Top-$ K $更差,并且在我们的实验中,当估计时,这也持有。
translated by 谷歌翻译
强大的机器学习模型的开发中的一个重要障碍是协变量的转变,当训练和测试集的输入分布时发生的分配换档形式在条件标签分布保持不变时发生。尽管现实世界应用的协变量转变普遍存在,但在现代机器学习背景下的理论理解仍然缺乏。在这项工作中,我们检查协变量的随机特征回归的精确高尺度渐近性,并在该设置中提出了限制测试误差,偏差和方差的精确表征。我们的结果激发了一种自然部分秩序,通过协变速转移,提供足够的条件来确定何时何时损害(甚至有助于)测试性能。我们发现,过度分辨率模型表现出增强的协会转变的鲁棒性,为这种有趣现象提供了第一个理论解释之一。此外,我们的分析揭示了分销和分发外概率性能之间的精确线性关系,为这一令人惊讶的近期实证观察提供了解释。
translated by 谷歌翻译
适应数据分布的结构(例如对称性和转型Imarerces)是机器学习中的重要挑战。通过架构设计或通过增强数据集,可以内在学习过程中内置Inhormces。两者都需要先验的了解对称性的确切性质。缺乏这种知识,从业者求助于昂贵且耗时的调整。为了解决这个问题,我们提出了一种新的方法来学习增强变换的分布,以新的\ emph {转换风险最小化}(trm)框架。除了预测模型之外,我们还优化了从假说空间中选择的转换。作为算法框架,我们的TRM方法是(1)有效(共同学习增强和模型,以\ emph {单训练环}),(2)模块化(使用\ emph {任何训练算法),以及(3)一般(处理\ \ ich {离散和连续}增强)。理论上与标准风险最小化的TRM比较,并在其泛化误差上给出PAC-Bayes上限。我们建议通过块组成的新参数化优化富裕的增强空间,导致新的\ EMPH {随机成分增强学习}(SCALE)算法。我们在CIFAR10 / 100,SVHN上使用先前的方法(快速自身自动化和武术器)进行实际比较规模。此外,我们表明规模可以在数据分布中正确地学习某些对称性(恢复旋转Mnist上的旋转),并且还可以改善学习模型的校准。
translated by 谷歌翻译
我们考虑采用转移学习方法,可以在目标任务上微调一个预处理的深神经网络。我们研究微调的概括特性,以了解过度拟合的问题,而这种问题通常在实践中发生。先前的工作表明,约束与微调初始化的距离可改善概括。使用Pac-bayesian分析,我们观察到,除了初始化的距离外,黑森人还通过深神网络的噪声稳定性影响噪声注射。在观察过程中,我们为广泛的微调方法开发了基于HESSIAN距离的概括界。此外,我们研究了在嘈杂标签的情况下进行微调的鲁棒性。在我们的理论中,我们设计了一种算法,该算法结合了一致的损失和基于距离的正则化,以进行微调,以及在训练集标签中有条件独立噪声下的概括错误保证。我们对各种嘈杂的环境和体系结构进行了详细的经验研究。在六个图像分类任务上,其训练标签是通过编程标签生成的,我们发现比先前的微调方法的精度增长了3.26%。同时,微型模型的Hessian距离度量降低了六倍,是现有方法的六倍。
translated by 谷歌翻译
由于在数据稀缺的设置中,交叉验证的性能不佳,我们提出了一个新颖的估计器,以估计数据驱动的优化策略的样本外部性能。我们的方法利用优化问题的灵敏度分析来估计梯度关于数据中噪声量的最佳客观值,并利用估计的梯度将策略的样本中的表现为依据。与交叉验证技术不同,我们的方法避免了为测试集牺牲数据,在训练和因此非常适合数据稀缺的设置时使用所有数据。我们证明了我们估计量的偏见和方差范围,这些问题与不确定的线性目标优化问题,但已知的,可能是非凸的,可行的区域。对于更专业的优化问题,从某种意义上说,可行区域“弱耦合”,我们证明结果更强。具体而言,我们在估算器的错误上提供明确的高概率界限,该估计器在策略类别上均匀地保持,并取决于问题的维度和策略类的复杂性。我们的边界表明,在轻度条件下,随着优化问题的尺寸的增长,我们的估计器的误差也会消失,即使可用数据的量仍然很小且恒定。说不同的是,我们证明我们的估计量在小型数据中的大规模政权中表现良好。最后,我们通过数值将我们提出的方法与最先进的方法进行比较,通过使用真实数据调度紧急医疗响应服务的案例研究。我们的方法提供了更准确的样本外部性能估计,并学习了表现更好的政策。
translated by 谷歌翻译
使用信息理论原理,我们考虑迭代半监督学习(SSL)算法的概括误差(Gen-Error),这些算法迭代地生成了大量未标记数据的伪标记,以逐步完善模型参数。与{\ em绑定} Gen-Error的大多数以前的作品相反,我们为Gen-Error提供了{\ em Exact}的表达,并将其专门为二进制高斯混合模型。我们的理论结果表明,当阶级条件差异不大时,Gen-Error随着迭代次数的数量而减少,但很快就会饱和。另一方面,如果类的条件差异(因此,类别之间的重叠量)很大,则Gen-Error随迭代次数的增加而增加。为了减轻这种不良效果,我们表明正则化可以减少Gen-Error。通过对MNIST和CIFAR数据集进行的广泛实验来证实理论结果,我们注意到,对于易于分类的类别,经过几次伪标记的迭代,Gen-Error会改善,但此后饱和,并且更难难以实现。区分类别,正则化改善了概括性能。
translated by 谷歌翻译
嵌套模拟涉及通过模拟估算条件期望的功能。在本文中,我们提出了一种基于内核RIDGE回归的新方法,利用作为多维调节变量的函数的条件期望的平滑度。渐近分析表明,随着仿真预算的增加,所提出的方法可以有效地减轻了对收敛速度的维度诅咒,只要条件期望足够平滑。平滑度桥接立方根收敛速度之间的间隙(即标准嵌套模拟的最佳速率)和平方根收敛速率(即标准蒙特卡罗模拟的规范率)。我们通过来自投资组合风险管理和输入不确定性量化的数值例子来证明所提出的方法的性能。
translated by 谷歌翻译
尽管自我监督学习(SSL)方法取得了经验成功,但尚不清楚其表示的哪些特征导致了高下游精度。在这项工作中,我们表征了SSL表示应该满足的属性。具体而言,我们证明了必要和充分的条件,因此,对于给出的数据增强的任何任务,在该表示形式上训练的所需探针(例如,线性或MLP)具有完美的准确性。这些要求导致一个统一的概念框架,用于改善现有的SSL方法并得出新方法。对于对比度学习,我们的框架规定了对以前的方法(例如使用不对称投影头)的简单但重大改进。对于非对比度学习,我们使用框架来得出一个简单新颖的目标。我们所得的SSL算法在标准基准测试上的表现优于基线,包括Imagenet线性探测的SHAV+多螺旋桨。
translated by 谷歌翻译
我们以非渐近方式考虑最大似然估计(MLE)的预期对数估计(MLE)的预期似然估计(MLE)的最佳次数(MAL)的缀合物最大(MAP)的问题。令人惊讶的是,我们在文献中没有找到对这个问题的一般解决方案。特别是,当前的理论不适用于高斯或有趣的少数样本制度。在表现出问题的各个方面之后,我们显示我们可以将地图解释为在日志可能性上运行随机镜像下降(SMD)。然而,现代收敛结果不适用于指数家庭的标准例子,突出趋同文献中的孔。我们认为解决这一非常根本的问题可能会对统计和优化社区带来进展。
translated by 谷歌翻译