适应数据分布的结构(例如对称性和转型Imarerces)是机器学习中的重要挑战。通过架构设计或通过增强数据集,可以内在学习过程中内置Inhormces。两者都需要先验的了解对称性的确切性质。缺乏这种知识,从业者求助于昂贵且耗时的调整。为了解决这个问题,我们提出了一种新的方法来学习增强变换的分布,以新的\ emph {转换风险最小化}(trm)框架。除了预测模型之外,我们还优化了从假说空间中选择的转换。作为算法框架,我们的TRM方法是(1)有效(共同学习增强和模型,以\ emph {单训练环}),(2)模块化(使用\ emph {任何训练算法),以及(3)一般(处理\ \ ich {离散和连续}增强)。理论上与标准风险最小化的TRM比较,并在其泛化误差上给出PAC-Bayes上限。我们建议通过块组成的新参数化优化富裕的增强空间,导致新的\ EMPH {随机成分增强学习}(SCALE)算法。我们在CIFAR10 / 100,SVHN上使用先前的方法(快速自身自动化和武术器)进行实际比较规模。此外,我们表明规模可以在数据分布中正确地学习某些对称性(恢复旋转Mnist上的旋转),并且还可以改善学习模型的校准。
translated by 谷歌翻译
在本文中,我们调查了问题:给定少数DataPoints,例如n = 30,可以严格的CAG-Bayes和测试集界限进行紧张吗?对于这种小型数据集,测试集界限通过从培训程序中扣留数据而产生不利影响泛化性能。在这种环境中,Pac-Bayes界限尤其吸引力,因为它们使用所有数据的能力同时学习后部并结合其泛化风险。我们专注于i.i.d.具有有界损失的数据,并考虑Germain等人的通用Pac-Bayes定理。虽然已知定理恢复许多现有的PAC-Bayes界,但目前尚不清楚他们的框架中最有束缚的终结。对于一个固定的学习算法和数据集,我们表明最紧密的绑定与Catoni考虑的绑定相一致;并且,在更自然的数据集发行情况下,我们在期望中获得最佳界限的下限。有趣的是,如果后部等于先前,则这个下限会恢复绑定的Chernoff测试集。此外,为了说明这些界限有多紧,我们研究了合成的一维分类任务,其中它是可行的 - 学习绑定的先前和形状,以便最有效地优化最佳界限。我们发现,在这种简单,受控的场景中,Pac-Bayes界竞争与可比常用的Chernoff测试集合界限具有竞争​​力。然而,最清晰的测试集界仍然导致泛化误差比我们考虑的Pac-Bayes所界限更好地保证。
translated by 谷歌翻译
The ability to quickly and accurately identify covariate shift at test time is a critical and often overlooked component of safe machine learning systems deployed in high-risk domains. While methods exist for detecting when predictions should not be made on out-of-distribution test examples, identifying distributional level differences between training and test time can help determine when a model should be removed from the deployment setting and retrained. In this work, we define harmful covariate shift (HCS) as a change in distribution that may weaken the generalization of a predictive model. To detect HCS, we use the discordance between an ensemble of classifiers trained to agree on training data and disagree on test data. We derive a loss function for training this ensemble and show that the disagreement rate and entropy represent powerful discriminative statistics for HCS. Empirically, we demonstrate the ability of our method to detect harmful covariate shift with statistical certainty on a variety of high-dimensional datasets. Across numerous domains and modalities, we show state-of-the-art performance compared to existing methods, particularly when the number of observed test samples is small.
translated by 谷歌翻译
Accurate uncertainty quantification is a major challenge in deep learning, as neural networks can make overconfident errors and assign high confidence predictions to out-of-distribution (OOD) inputs. The most popular approaches to estimate predictive uncertainty in deep learning are methods that combine predictions from multiple neural networks, such as Bayesian neural networks (BNNs) and deep ensembles. However their practicality in real-time, industrial-scale applications are limited due to the high memory and computational cost. Furthermore, ensembles and BNNs do not necessarily fix all the issues with the underlying member networks. In this work, we study principled approaches to improve uncertainty property of a single network, based on a single, deterministic representation. By formalizing the uncertainty quantification as a minimax learning problem, we first identify distance awareness, i.e., the model's ability to quantify the distance of a testing example from the training data, as a necessary condition for a DNN to achieve high-quality (i.e., minimax optimal) uncertainty estimation. We then propose Spectral-normalized Neural Gaussian Process (SNGP), a simple method that improves the distance-awareness ability of modern DNNs with two simple changes: (1) applying spectral normalization to hidden weights to enforce bi-Lipschitz smoothness in representations and (2) replacing the last output layer with a Gaussian process layer. On a suite of vision and language understanding benchmarks, SNGP outperforms other single-model approaches in prediction, calibration and out-of-domain detection. Furthermore, SNGP provides complementary benefits to popular techniques such as deep ensembles and data augmentation, making it a simple and scalable building block for probabilistic deep learning. Code is open-sourced at https://github.com/google/uncertainty-baselines
translated by 谷歌翻译
现代深度学习方法构成了令人难以置信的强大工具,以解决无数的挑战问题。然而,由于深度学习方法作为黑匣子运作,因此与其预测相关的不确定性往往是挑战量化。贝叶斯统计数据提供了一种形式主义来理解和量化与深度神经网络预测相关的不确定性。本教程概述了相关文献和完整的工具集,用于设计,实施,列车,使用和评估贝叶斯神经网络,即使用贝叶斯方法培训的随机人工神经网络。
translated by 谷歌翻译
关于数据中的不变或对称性的假设可以显着提高统计模型的预测能力。机器学习中的许多常用模型都受到限制,以尊重数据中的某些对称性,例如卷积神经网络中的翻译等效性,并且正在积极研究新的对称类型的融合。然而,从数据本身中学习此类不变的努力仍然是一个开放的研究问题。已经表明,边际可能性提供了一种在高斯过程中学习不变的原则方法。我们提出了一个相当于这种方法的权重空间,方法是通过最大程度地减少在神经网络中学习不变的可能性的下限,从而自然具有更高的性能模型。
translated by 谷歌翻译
Normalizing flows provide a general mechanism for defining expressive probability distributions, only requiring the specification of a (usually simple) base distribution and a series of bijective transformations. There has been much recent work on normalizing flows, ranging from improving their expressive power to expanding their application. We believe the field has now matured and is in need of a unified perspective. In this review, we attempt to provide such a perspective by describing flows through the lens of probabilistic modeling and inference. We place special emphasis on the fundamental principles of flow design, and discuss foundational topics such as expressive power and computational trade-offs. We also broaden the conceptual framing of flows by relating them to more general probability transformations. Lastly, we summarize the use of flows for tasks such as generative modeling, approximate inference, and supervised learning.
translated by 谷歌翻译
通过使一组基本预测因素投票根据一些权重,即对某些概率分布来获得聚合预测器。根据一些规定的概率分布,通过在一组基本预测器中采样来获得随机预测器。因此,聚合和随机预测器的共同之处包括最小化问题,而是通过对预测器集的概率分布来定义。在统计学习理论中,有一套工具旨在了解此类程序的泛化能力:Pac-Bayesian或Pac-Bayes界。由于D. Mcallester的原始Pac-Bayes界,这些工具在许多方向上得到了大大改善(例如,我们将描述社区错过的O. Catoni的定位技术的简化版本,后来被重新发现“相互信息界“)。最近,Pac-Bayes的界限受到相当大的关注:例如,在2017年的Pac-Bayes上有研讨会,“(几乎)50种贝叶斯学习:Pac-Bayesian趋势和见解”,由B. Guedj,F组织。 。巴赫和P.Merain。这一最近成功的原因之一是通过G. Dziugaite和D. Roy成功地将这些限制应用于神经网络。对Pac-Bayes理论的初步介绍仍然缺失。这是一种尝试提供这样的介绍。
translated by 谷歌翻译
所有著名的机器学习算法构成了受监督和半监督的学习工作,只有在一个共同的假设下:培训和测试数据遵循相同的分布。当分布变化时,大多数统计模型必须从新收集的数据中重建,对于某些应用程序,这些数据可能是昂贵或无法获得的。因此,有必要开发方法,以减少在相关领域中可用的数据并在相似领域中进一步使用这些数据,从而减少需求和努力获得新的标签样品。这引起了一个新的机器学习框架,称为转移学习:一种受人类在跨任务中推断知识以更有效学习的知识能力的学习环境。尽管有大量不同的转移学习方案,但本调查的主要目的是在特定的,可以说是最受欢迎的转移学习中最受欢迎的次级领域,概述最先进的理论结果,称为域适应。在此子场中,假定数据分布在整个培训和测试数据中发生变化,而学习任务保持不变。我们提供了与域适应性问题有关的现有结果的首次最新描述,该结果涵盖了基于不同统计学习框架的学习界限。
translated by 谷歌翻译
本文研究了用于训练过度参数化制度中的贝叶斯神经网络(BNN)的变异推理(VI),即当神经元的数量趋于无穷大时。更具体地说,我们考虑过度参数化的两层BNN,并指出平均VI训练中的关键问题。这个问题来自于证据(ELBO)的下限分解为两个术语:一个与模型的可能性函数相对应,第二个对应于kullback-leibler(KL)差异(KL)差异。特别是,我们从理论和经验上都表明,只有当根据观测值和神经元之间的比率适当地重新缩放KL时,在过度参数化制度中,这两个术语之间存在权衡。我们还通过数值实验来说明我们的理论结果,这些实验突出了该比率的关键选择。
translated by 谷歌翻译
监督学习的关键假设是培训和测试数据遵循相同的概率分布。然而,这种基本假设在实践中并不总是满足,例如,由于不断变化的环境,样本选择偏差,隐私问题或高标签成本。转移学习(TL)放松这种假设,并允许我们在分销班次下学习。通常依赖于重要性加权的经典TL方法 - 基于根据重要性(即测试过度训练密度比率)的训练损失培训预测器。然而,由于现实世界机器学习任务变得越来越复杂,高维和动态,探讨了新的新方法,以应对这些挑战最近。在本文中,在介绍基于重要性加权的TL基础之后,我们根据关节和动态重要预测估计审查最近的进步。此外,我们介绍一种因果机制转移方法,该方法包含T1中的因果结构。最后,我们讨论了TL研究的未来观点。
translated by 谷歌翻译
域的概括(DG)通过利用来自多个相关分布或域的标记培训数据在看不见的测试分布上表现良好的预测因子。为了实现这一目标,标准公式优化了所有可能域的最差性能。但是,由于最糟糕的转变在实践中的转变极不可能,这通常会导致过度保守的解决方案。实际上,最近的一项研究发现,没有DG算法在平均性能方面优于经验风险最小化。在这项工作中,我们认为DG既不是最坏的问题,也不是一个普通的问题,而是概率问题。为此,我们为DG提出了一个概率框架,我们称之为可能的域概括,其中我们的关键想法是在训练期间看到的分配变化应在测试时告诉我们可能的变化。为了实现这一目标,我们将培训和测试域明确关联为从同一基础元分布中获取的,并提出了一个新的优化问题 - 分数风险最小化(QRM) - 要求该预测因子以很高的概率概括。然后,我们证明了QRM:(i)产生的预测因子,这些预测因素将具有所需概率的新域(给定足够多的域和样本); (ii)随着概括的所需概率接近一个,恢复因果预测因子。在我们的实验中,我们引入了针对DG的更全面的以分位数评估协议,并表明我们的算法在真实和合成数据上的最先进基准都优于最先进的基准。
translated by 谷歌翻译
机器学习系统经常在培训和测试之间遇到分发转变。在本文中,我们介绍了一个简单的变分目标,其OptiCa正好成为所有表现形式的集合,在那种情况下,保证风险最小化者对保留贝叶斯预测因子的任何分配换档,例如协变量。我们的目标有两个组成部分。首先,表示必须保持对任务的判别,即,一些预测指标必须能够同时最小化来源和目标风险。其次,代表性的边际支持需要跨源头和目标相同。我们通过设计自我监督的学习方法来实现这一实用,只使用未标记的数据和增强来培训强大的陈述。我们的目标在域底实现最先进的结果,并对最近的方法(如剪辑)的稳健性提供洞察力。
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
We introduce a tunable loss function called $\alpha$-loss, parameterized by $\alpha \in (0,\infty]$, which interpolates between the exponential loss ($\alpha = 1/2$), the log-loss ($\alpha = 1$), and the 0-1 loss ($\alpha = \infty$), for the machine learning setting of classification. Theoretically, we illustrate a fundamental connection between $\alpha$-loss and Arimoto conditional entropy, verify the classification-calibration of $\alpha$-loss in order to demonstrate asymptotic optimality via Rademacher complexity generalization techniques, and build-upon a notion called strictly local quasi-convexity in order to quantitatively characterize the optimization landscape of $\alpha$-loss. Practically, we perform class imbalance, robustness, and classification experiments on benchmark image datasets using convolutional-neural-networks. Our main practical conclusion is that certain tasks may benefit from tuning $\alpha$-loss away from log-loss ($\alpha = 1$), and to this end we provide simple heuristics for the practitioner. In particular, navigating the $\alpha$ hyperparameter can readily provide superior model robustness to label flips ($\alpha > 1$) and sensitivity to imbalanced classes ($\alpha < 1$).
translated by 谷歌翻译
我们在对数损失下引入条件密度估计的过程,我们调用SMP(样本Minmax预测器)。该估算器最大限度地减少了统计学习的新一般过度风险。在标准示例中,此绑定量表为$ d / n $,$ d $ d $模型维度和$ n $ sample大小,并在模型拼写条目下批判性仍然有效。作为一个不当(超出型号)的程序,SMP在模型内估算器(如最大似然估计)的内部估算器上,其风险过高的风险降低。相比,与顺序问题的方法相比,我们的界限删除了SubOltimal $ \ log n $因子,可以处理无限的类。对于高斯线性模型,SMP的预测和风险受到协变量的杠杆分数,几乎匹配了在没有条件的线性模型的噪声方差或近似误差的条件下匹配的最佳风险。对于Logistic回归,SMP提供了一种非贝叶斯方法来校准依赖于虚拟样本的概率预测,并且可以通过解决两个逻辑回归来计算。它达到了$ O的非渐近风险((d + b ^ 2r ^ 2)/ n)$,其中$ r $绑定了特征的规范和比较参数的$ B $。相比之下,在模型内估计器内没有比$ \ min达到更好的速率({b r} / {\ sqrt {n}},{d e ^ {br} / {n})$。这为贝叶斯方法提供了更实用的替代方法,这需要近似的后部采样,从而部分地解决了Foster等人提出的问题。 (2018)。
translated by 谷歌翻译
鉴于$ n $ i.i.d.从未知的分发$ P $绘制的样本,何时可以生成更大的$ n + m $ samples,这些标题不能与$ n + m $ i.i.d区别区别。从$ p $绘制的样品?(AXELROD等人2019)将该问题正式化为样本放大问题,并为离散分布和高斯位置模型提供了最佳放大程序。然而,这些程序和相关的下限定制到特定分布类,对样本扩增的一般统计理解仍然很大程度上。在这项工作中,我们通过推出通常适用的放大程序,下限技术和与现有统计概念的联系来放置对公司统计基础的样本放大问题。我们的技术适用于一大类分布,包括指数家庭,并在样本放大和分配学习之间建立严格的联系。
translated by 谷歌翻译
We study distributionally robust optimization (DRO) with Sinkhorn distance -- a variant of Wasserstein distance based on entropic regularization. We provide convex programming dual reformulation for a general nominal distribution. Compared with Wasserstein DRO, it is computationally tractable for a larger class of loss functions, and its worst-case distribution is more reasonable. We propose an efficient first-order algorithm with bisection search to solve the dual reformulation. We demonstrate that our proposed algorithm finds $\delta$-optimal solution of the new DRO formulation with computation cost $\tilde{O}(\delta^{-3})$ and memory cost $\tilde{O}(\delta^{-2})$, and the computation cost further improves to $\tilde{O}(\delta^{-2})$ when the loss function is smooth. Finally, we provide various numerical examples using both synthetic and real data to demonstrate its competitive performance and light computational speed.
translated by 谷歌翻译
这项正在进行的工作旨在为统计学习提供统一的介绍,从诸如GMM和HMM等经典模型到现代神经网络(如VAE和扩散模型)缓慢地构建。如今,有许多互联网资源可以孤立地解释这一点或新的机器学习算法,但是它们并没有(也不能在如此简短的空间中)将这些算法彼此连接起来,或者与统计模型的经典文献相连现代算法出现了。同样明显缺乏的是一个单一的符号系统,尽管对那些已经熟悉材料的人(如这些帖子的作者)不满意,但对新手的入境造成了重大障碍。同样,我的目的是将各种模型(尽可能)吸收到一个用于推理和学习的框架上,表明(以及为什么)如何以最小的变化将一个模型更改为另一个模型(其中一些是新颖的,另一些是文献中的)。某些背景当然是必要的。我以为读者熟悉基本的多变量计算,概率和统计以及线性代数。这本书的目标当然不是​​完整性,而是从基本知识到过去十年中极强大的新模型的直线路径或多或少。然后,目标是补充而不是替换,诸如Bishop的\ emph {模式识别和机器学习}之类的综合文本,该文本现在已经15岁了。
translated by 谷歌翻译
近年来目睹了采用灵活的机械学习模型进行乐器变量(IV)回归的兴趣,但仍然缺乏不确定性量化方法的发展。在这项工作中,我们为IV次数回归提出了一种新的Quasi-Bayesian程序,建立了最近开发的核化IV模型和IV回归的双/极小配方。我们通过在$ l_2 $和sobolev规范中建立最低限度的最佳收缩率,并讨论可信球的常见有效性来分析所提出的方法的频繁行为。我们进一步推出了一种可扩展的推理算法,可以扩展到与宽神经网络模型一起工作。实证评价表明,我们的方法对复杂的高维问题产生了丰富的不确定性估计。
translated by 谷歌翻译