情绪分析通常是许多注释器给出的主观标签的众群任务。尚未完全理解每个注释器的注释偏差如何使用最先进的方法正确建模。但是,精确且可靠地解决了注释偏见是了解注释器标记行为的关键,并成功解决有关注释任务的相应个人误解和不法行为。我们的贡献是精确神经端到端偏置建模和地面真理估计的解释和改进,这减少了对现有最先进的现有的不期望的不匹配。分类实验表明,在每个样品仅被一个单个注释器注释的情况下,它具有提高准确性。我们公开提供整个源代码,并释放包含10,000个句子的自己的域特定情绪数据集,讨论有机食品。这些蔓延从社交媒体上爬行,并由10名非专家注释器单独标记。
translated by 谷歌翻译
尽管与专家标签相比,众包平台通常用于收集用于培训机器学习模型的数据集,尽管标签不正确。有两种常见的策略来管理这种噪音的影响。第一个涉及汇总冗余注释,但以较少的例子为代价。其次,先前的作品还考虑使用整个注释预算来标记尽可能多的示例,然后应用Denoising算法来隐式清洁数据集。我们找到了一个中间立场,并提出了一种方法,该方法保留了一小部分注释,以明确清理高度可能的错误样本以优化注释过程。特别是,我们分配了标签预算的很大一部分,以形成用于训练模型的初始数据集。然后,该模型用于确定最有可能是不正确的特定示例,我们将剩余预算用于重新标记。在三个模型变化和四个自然语言处理任务上进行的实验表明,当分配相同的有限注释预算时,旨在处理嘈杂标签的标签聚合和高级denoising方法均优于标签聚合或匹配。
translated by 谷歌翻译
Supervised approaches generally rely on majority-based labels. However, it is hard to achieve high agreement among annotators in subjective tasks such as hate speech detection. Existing neural network models principally regard labels as categorical variables, while ignoring the semantic information in diverse label texts. In this paper, we propose AnnoBERT, a first-of-its-kind architecture integrating annotator characteristics and label text with a transformer-based model to detect hate speech, with unique representations based on each annotator's characteristics via Collaborative Topic Regression (CTR) and integrate label text to enrich textual representations. During training, the model associates annotators with their label choices given a piece of text; during evaluation, when label information is not available, the model predicts the aggregated label given by the participating annotators by utilising the learnt association. The proposed approach displayed an advantage in detecting hate speech, especially in the minority class and edge cases with annotator disagreement. Improvement in the overall performance is the largest when the dataset is more label-imbalanced, suggesting its practical value in identifying real-world hate speech, as the volume of hate speech in-the-wild is extremely small on social media, when compared with normal (non-hate) speech. Through ablation studies, we show the relative contributions of annotator embeddings and label text to the model performance, and tested a range of alternative annotator embeddings and label text combinations.
translated by 谷歌翻译
媒体报道对公众对事件的看法具有重大影响。尽管如此,媒体媒体经常有偏见。偏见新闻文章的一种方法是改变选择一词。通过单词选择对偏见的自动识别是具有挑战性的,这主要是由于缺乏黄金标准数据集和高环境依赖性。本文介绍了Babe,这是由训练有素的专家创建的强大而多样化的数据集,用于媒体偏见研究。我们还分析了为什么专家标签在该域中至关重要。与现有工作相比,我们的数据集提供了更好的注释质量和更高的通知者协议。它由主题和插座之间平衡的3,700个句子组成,其中包含单词和句子级别上的媒体偏见标签。基于我们的数据,我们还引入了一种自动检测新闻文章中偏见的句子的方法。我们最佳性能基于BERT的模型是在由遥远标签组成的较大语料库中进行预训练的。对我们提出的监督数据集进行微调和评估模型,我们达到了0.804的宏F1得分,表现优于现有方法。
translated by 谷歌翻译
人群顺序注释可能是一种有效且具有成本效益的方式,用于构建用于序列标签的大型数据集。不同于标记独立实例,对于人群顺序注释,标签序列的质量取决于注释者在捕获序列中每个令牌的内部依赖性方面的专业知识水平。在本文中,我们提出了与人群(SA-SLC)进行序列标记的序列注释。首先,开发了有条件的概率模型,以共同模拟顺序数据和注释者的专业知识,其中引入分类分布以估计每个注释者在捕获局部和非本地标签依赖性以进行顺序注释时的可靠性。为了加速所提出模型的边缘化,提出了有效的标签序列推理(VLSE)方法,以从人群顺序注释中得出有效的地面真相标签序列。 VLSE从令牌级别中得出了可能的地面真相标签,并在标签序列解码的正向推断中进一步介绍了李子标签。 VLSE减少了候选标签序列的数量,并提高了可能的地面真实标签序列的质量。自然语言处理的几个序列标记任务的实验结果显示了所提出的模型的有效性。
translated by 谷歌翻译
情绪分析中最突出的任务是为文本分配情绪,并了解情绪如何在语言中表现出来。自然语言处理的一个重要观察结果是,即使没有明确提及情感名称,也可以通过单独参考事件来隐式传达情绪。在心理学中,被称为评估理论的情感理论类别旨在解释事件与情感之间的联系。评估可以被形式化为变量,通过他们认为相关的事件的人们的认知评估来衡量认知评估。其中包括评估事件是否是新颖的,如果该人认为自己负责,是否与自己的目标以及许多其他人保持一致。这样的评估解释了哪些情绪是基于事件开发的,例如,新颖的情况会引起惊喜或不确定后果的人可能引起恐惧。我们在文本中分析了评估理论对情绪分析的适用性,目的是理解注释者是否可以可靠地重建评估概念,如果可以通过文本分类器预测,以及评估概念是否有助于识别情感类别。为了实现这一目标,我们通过要求人们发短信描述触发特定情绪并披露其评估的事件来编译语料库。然后,我们要求读者重建文本中的情感和评估。这种设置使我们能够衡量是否可以纯粹从文本中恢复情绪和评估,并为判断模型的绩效指标提供人体基准。我们将文本分类方法与人类注释者的比较表明,两者都可以可靠地检测出具有相似性能的情绪和评估。我们进一步表明,评估概念改善了文本中情绪的分类。
translated by 谷歌翻译
The performance of the Deep Learning (DL) models depends on the quality of labels. In some areas, the involvement of human annotators may lead to noise in the data. When these corrupted labels are blindly regarded as the ground truth (GT), DL models suffer from performance deficiency. This paper presents a method that aims to learn a confident model in the presence of noisy labels. This is done in conjunction with estimating the uncertainty of multiple annotators. We robustly estimate the predictions given only the noisy labels by adding entropy or information-based regularizer to the classifier network. We conduct our experiments on a noisy version of MNIST, CIFAR-10, and FMNIST datasets. Our empirical results demonstrate the robustness of our method as it outperforms or performs comparably to other state-of-the-art (SOTA) methods. In addition, we evaluated the proposed method on the curated dataset, where the noise type and level of various annotators depend on the input image style. We show that our approach performs well and is adept at learning annotators' confusion. Moreover, we demonstrate how our model is more confident in predicting GT than other baselines. Finally, we assess our approach for segmentation problem and showcase its effectiveness with experiments.
translated by 谷歌翻译
We show that large pre-trained language models are inherently highly capable of identifying label errors in natural language datasets: simply examining out-of-sample data points in descending order of fine-tuned task loss significantly outperforms more complex error-detection mechanisms proposed in previous work. To this end, we contribute a novel method for introducing realistic, human-originated label noise into existing crowdsourced datasets such as SNLI and TweetNLP. We show that this noise has similar properties to real, hand-verified label errors, and is harder to detect than existing synthetic noise, creating challenges for model robustness. We argue that human-originated noise is a better standard for evaluation than synthetic noise. Finally, we use crowdsourced verification to evaluate the detection of real errors on IMDB, Amazon Reviews, and Recon, and confirm that pre-trained models perform at a 9-36% higher absolute Area Under the Precision-Recall Curve than existing models.
translated by 谷歌翻译
通过更换繁琐的手动收集地面真理标签,聚合多个弱监管源(WS)可以缓解多种机器学习应用中的数据标记瓶颈。然而,当前的现有技术不使用任何标记的训练数据的方法需要两个单独的建模步骤:基于WS源的基于WS源的概率潜在变量模型 - 使得在实践中很少 - 之后是下游模型训练。重要的是,建模的第一步不考虑下游模型的性能。为了解决这些警告,我们提出了一种直接学习下游模​​型的端到端方法,通过将其与先前概率后海报的概率标签最大化来直接学习下游模​​型。我们的结果表明,在下游测试集的最终模型性能方面,以及改善弱势监督源之间的依赖性的鲁棒性方面,对先前的工作进行了改进的性能。
translated by 谷歌翻译
Selecting an effective training signal for tasks in natural language processing is difficult: collecting expert annotations is expensive, and crowd-sourced annotations may not be reliable. At the same time, recent work in machine learning has demonstrated that learning from soft-labels acquired from crowd annotations can be effective, especially when there is distribution shift in the test set. However, the best method for acquiring these soft labels is inconsistent across tasks. This paper proposes new methods for acquiring soft-labels from crowd-annotations by aggregating the distributions produced by existing methods. In particular, we propose to find a distribution over classes by learning from multiple-views of crowd annotations via temperature scaling and finding the Jensen-Shannon centroid of their distributions. We demonstrate that using these aggregation methods leads to best or near-best performance across four NLP tasks on out-of-domain test sets, mitigating fluctuations in performance when using the constituent methods on their own. Additionally, these methods result in best or near-best uncertainty estimation across tasks. We argue that aggregating different views of crowd-annotations as soft-labels is an effective way to ensure performance which is as good or better than the best individual view, which is useful given the inconsistency in performance of the individual methods.
translated by 谷歌翻译
我们研究了自然语言推断(NLI)注释的分歧。我们开发了一种分类来源的分类法,其中10个类别涵盖了3个高级类别。我们发现,某些分歧是由于句子含义的不确定性所致,而另一些分歧是对注释偏见和任务工件的,从而导致对标签分布的不同解释。我们探索了两种用于检测具有潜在分歧的项目的建模方法:除了三个标准NLI标签外,具有“复杂”标签的四向分类以及一种多标签分类方法。我们发现,多标签分类更具表现力,并更好地回忆了数据中可能的解释。
translated by 谷歌翻译
食源性疾病是一个严重但可以预防的公共卫生问题 - 延迟发现相关的暴发导致生产力损失,昂贵的召回,公共安全危害甚至生命丧失。尽管社交媒体是识别未报告的食源性疾病的有前途的来源,但缺乏标记的数据集来开发有效的爆发检测模型。为了加快基于机器学习的疫苗爆发检测模型的开发,我们提出了推文-FID(Tweet-Foodborne疾病检测),这是第一个用于多种食源性疾病事件检测任务的公开注释的数据集。从Twitter收集的Tweet-FID带有三个方面:Tweet类,实体类型和老虎机类型,并带有专家以及众包工人生产的标签。我们介绍了利用这三个方面的几个域任务:文本相关性分类(TRC),实体提及检测(EMD)和插槽填充(SF)。我们描述了用于支持这些任务模型开发的数据集设计,创建和标签的端到端方法。提供了这些任务的全面结果,以利用Tweet-FID数据集上的最新单项和多任务深度学习方法。该数据集为未来的Foodborne爆发检测提供了机会。
translated by 谷歌翻译
媒体覆盖率对公众对事件的看法具有实质性影响。尽管如此,媒体网点往往偏见。偏见新闻文章的一种方法是改变单词选择。单词选择自动识别偏差是具有挑战性的,主要是由于缺乏金标准数据集和高上下文依赖性。在本研究项目中,我旨在设计数据集和方法来识别媒体偏差。为实现这一目标,我计划使用自然语言处理和深度学习的研究方法,同时使用模型,并使用心理学和语言学的分析概念。第一个结果表明了跨学科研究方法的有效性。我的愿景是设计一个系统,帮助新闻读者了解偏见造成的媒体覆盖差异。到目前为止,我最好的基于BERT的模型是在较大的标签组成的较大核查上进行预先培训,表明远程监管有可能成为偏向偏差困难任务的解决方案。
translated by 谷歌翻译
构建用于仇恨语音检测的基准数据集具有各种挑战。首先,因为仇恨的言论相对少见,随机抽样对诠释的推文是非常效率的发现仇恨。为了解决此问题,先前的数据集通常仅包含匹配已知的“讨厌字”的推文。然而,将数据限制为预定义的词汇表可能排除我们寻求模型的现实世界现象的部分。第二个挑战是仇恨言论的定义往往是高度不同和主观的。具有多种讨论仇恨言论的注释者可能不仅可能不同意彼此不同意,而且还努力符合指定的标签指南。我们的重点识别是仇恨语音的罕见和主体性类似于信息检索(IR)中的相关性。此连接表明,可以有效地应用创建IR测试集合的良好方法,以创建更好的基准数据集以进行仇恨语音。为了智能和有效地选择要注释的推文,我们应用{\ em汇集}和{em主动学习}的标准IR技术。为了提高注释的一致性和价值,我们应用{\ EM任务分解}和{\ EM注释器理由}技术。我们在Twitter上共享一个用于仇恨语音检测的新基准数据集,其提供比以前的数据集更广泛的仇恨覆盖。在这些更广泛形式的仇恨中测试时,我们还表现出现有检测模型的准确性的戏剧性降低。注册器理由我们不仅可以证明标签决策证明,而且还可以在建模中实现未来的双重监督和/或解释生成的工作机会。我们的方法的进一步细节可以在补充材料中找到。
translated by 谷歌翻译
我们介绍了Daisee,这是第一个多标签视频分类数据集,该数据集由112个用户捕获的9068个视频片段,用于识别野外无聊,混乱,参与度和挫败感的用户情感状态。该数据集具有四个级别的标签 - 每个情感状态都非常低,低,高和很高,它们是人群注释并与使用专家心理学家团队创建的黄金标准注释相关的。我们还使用当今可用的最先进的视频分类方法在此数据集上建立了基准结果。我们认为,黛西(Daisee)将为研究社区提供特征提取,基于上下文的推理以及为相关任务开发合适的机器学习方法的挑战,从而为进一步的研究提供了跳板。该数据集可在https://people.iith.ac.in/vineethnb/resources/daisee/daisee/index.html下载。
translated by 谷歌翻译
To effectively train accurate Relation Extraction models, sufficient and properly labeled data is required. Adequately labeled data is difficult to obtain and annotating such data is a tricky undertaking. Previous works have shown that either accuracy has to be sacrificed or the task is extremely time-consuming, if done accurately. We are proposing an approach in order to produce high-quality datasets for the task of Relation Extraction quickly. Neural models, trained to do Relation Extraction on the created datasets, achieve very good results and generalize well to other datasets. In our study, we were able to annotate 10,022 sentences for 19 relations in a reasonable amount of time, and trained a commonly used baseline model for each relation.
translated by 谷歌翻译
众包被视为有效监督学习的一个潜在解决方案,旨在通过人群工人建立大规模的注释培训数据。以前的研究重点是减少来自众包注释的噪音的影响。我们在这项工作中涉及不同的观点,关于所有众包作为个人注册人的金标。通过这种方式,我们发现众群可能与域适应高度相似,然后近域方法的最近进步几乎可以直接应用于众包。在这里,我们将命名实体识别(ner)作为一项研究案例,建议由尝试捕获有效域感知功能的域适配方法的吸引人感知表示学习模型。我们调查无监督和监督的众群学习,假设没有或只有小型专家注释。基准众包的实验结果表明,我们的方法非常有效,导致新的最先进的性能。此外,在监督环境下,我们只能通过非常小的专家注释来实现令人印象深刻的性能。
translated by 谷歌翻译
社交媒体在我们与朋友和家人的沟通以及信息和娱乐的消费中起着越来越多的作用。因此,为了在社交媒体上设计有效的排名功能,预测对帖子的情感响应将是有用的(例如,用户是否有可能幽默,启发,激怒,知情)。类似于情感识别的工作(侧重于发行者的影响),识别情感反应的传统方法将涉及培训数据的人类注释的昂贵投资。我们介绍了护理$ _ {db} $,这是一个使用常见情感响应表达式(CARE)方法根据7个情感响应注释的230k社交媒体帖子的数据集。护理方法是利用响应帖子发布的评论中存在的信号的手段,提供了有关读者对帖子而没有人类注释的情感反应的高精度证据。与人类注释不同,我们在这里描述的注释过程可以迭代以扩大方法的覆盖范围,尤其是对于新的情感反应。我们提出的实验表明,护理注释与人群的注释相比有利。最后,我们使用Care $ _ {db} $来训练基于竞争性BERT的模型来预测情感响应和情感检测,并证明了数据集用于相关任务的实用性。
translated by 谷歌翻译
多代理行为建模旨在了解代理之间发生的交互。我们从行为神经科学,Caltech鼠标社交交互(CALMS21)数据集中提供了一个多代理数据集。我们的数据集由社交交互的轨迹数据组成,从标准居民入侵者测定中自由行为小鼠的视频记录。为了帮助加速行为研究,CALMS21数据集提供基准,以评估三种设置中自动行为分类方法的性能:(1)用于培训由单个注释器的所有注释,(2)用于风格转移以进行学习互动在特定有限培训数据的新行为学习的行为定义和(3)的注释差异。 DataSet由600万个未标记的追踪姿势的交互小鼠组成,以及超过100万帧,具有跟踪的姿势和相应的帧级行为注释。我们的数据集的挑战是能够使用标记和未标记的跟踪数据准确地对行为进行分类,以及能够概括新设置。
translated by 谷歌翻译
情绪分析的研究分散在不同的标签格式(例如,极性类型,基本情感类别和情感尺寸),语言水平(词与句子与话语),当然,(几乎没有资源但更多资源不足)自然语言和文本类型(例如,产品评论,推文,新闻)。由此产生的异质性使得在这些冲突的限制下开发的数据和软件难以比较和挑战整合。为了解决这种不满意的事态,我们在这里提出了一种培训计划,该培训计划学习与不同标签格式,自然语言,甚至不同的模型架构无关的情感共享潜在的情绪。在各种数据集上的实验表明该方法不会产生所需的互操作性,而不会惩罚预测质量。代码和数据在DOI 10.5281 / ZENODO.5466068下存档。
translated by 谷歌翻译