媒体报道对公众对事件的看法具有重大影响。尽管如此,媒体媒体经常有偏见。偏见新闻文章的一种方法是改变选择一词。通过单词选择对偏见的自动识别是具有挑战性的,这主要是由于缺乏黄金标准数据集和高环境依赖性。本文介绍了Babe,这是由训练有素的专家创建的强大而多样化的数据集,用于媒体偏见研究。我们还分析了为什么专家标签在该域中至关重要。与现有工作相比,我们的数据集提供了更好的注释质量和更高的通知者协议。它由主题和插座之间平衡的3,700个句子组成,其中包含单词和句子级别上的媒体偏见标签。基于我们的数据,我们还引入了一种自动检测新闻文章中偏见的句子的方法。我们最佳性能基于BERT的模型是在由遥远标签组成的较大语料库中进行预训练的。对我们提出的监督数据集进行微调和评估模型,我们达到了0.804的宏F1得分,表现优于现有方法。
translated by 谷歌翻译
媒体覆盖率对公众对事件的看法具有实质性影响。尽管如此,媒体网点往往偏见。偏见新闻文章的一种方法是改变单词选择。单词选择自动识别偏差是具有挑战性的,主要是由于缺乏金标准数据集和高上下文依赖性。在本研究项目中,我旨在设计数据集和方法来识别媒体偏差。为实现这一目标,我计划使用自然语言处理和深度学习的研究方法,同时使用模型,并使用心理学和语言学的分析概念。第一个结果表明了跨学科研究方法的有效性。我的愿景是设计一个系统,帮助新闻读者了解偏见造成的媒体覆盖差异。到目前为止,我最好的基于BERT的模型是在较大的标签组成的较大核查上进行预先培训,表明远程监管有可能成为偏向偏差困难任务的解决方案。
translated by 谷歌翻译
Media has a substantial impact on the public perception of events. A one-sided or polarizing perspective on any topic is usually described as media bias. One of the ways how bias in news articles can be introduced is by altering word choice. Biased word choices are not always obvious, nor do they exhibit high context-dependency. Hence, detecting bias is often difficult. We propose a Transformer-based deep learning architecture trained via Multi-Task Learning using six bias-related data sets to tackle the media bias detection problem. Our best-performing implementation achieves a macro $F_{1}$ of 0.776, a performance boost of 3\% compared to our baseline, outperforming existing methods. Our results indicate Multi-Task Learning as a promising alternative to improve existing baseline models in identifying slanted reporting.
translated by 谷歌翻译
当客观报告代替主观写作时,诸如百科全书和新闻文章的参考文本可以表现出偏见的语言。现有方法检测偏差主要依赖于带注释的数据来训练机器学习模型。但是,低注释员协议和可比性是可用媒体偏见Corpora的实质性缺点。为了评估数据收集选项,我们收集和比较从两个流行的众包平台获得的标签。我们的结果展示了现有的众包缺乏数据质量,强调了培训的专家框架的需要收集更可靠的数据集。通过创建此类框架并收集第一个数据集,我们能够将Krippendorff的$ \ Alpha $ = 0.144(众群标签)提升为$ \ Alpha $ = 0.419(专家标签)。我们得出结论,详细的注释培训提高了数据质量,提高了现有偏置检测系统的性能。我们将来继续扩展我们的数据集。
translated by 谷歌翻译
构建用于仇恨语音检测的基准数据集具有各种挑战。首先,因为仇恨的言论相对少见,随机抽样对诠释的推文是非常效率的发现仇恨。为了解决此问题,先前的数据集通常仅包含匹配已知的“讨厌字”的推文。然而,将数据限制为预定义的词汇表可能排除我们寻求模型的现实世界现象的部分。第二个挑战是仇恨言论的定义往往是高度不同和主观的。具有多种讨论仇恨言论的注释者可能不仅可能不同意彼此不同意,而且还努力符合指定的标签指南。我们的重点识别是仇恨语音的罕见和主体性类似于信息检索(IR)中的相关性。此连接表明,可以有效地应用创建IR测试集合的良好方法,以创建更好的基准数据集以进行仇恨语音。为了智能和有效地选择要注释的推文,我们应用{\ em汇集}和{em主动学习}的标准IR技术。为了提高注释的一致性和价值,我们应用{\ EM任务分解}和{\ EM注释器理由}技术。我们在Twitter上共享一个用于仇恨语音检测的新基准数据集,其提供比以前的数据集更广泛的仇恨覆盖。在这些更广泛形式的仇恨中测试时,我们还表现出现有检测模型的准确性的戏剧性降低。注册器理由我们不仅可以证明标签决策证明,而且还可以在建模中实现未来的双重监督和/或解释生成的工作机会。我们的方法的进一步细节可以在补充材料中找到。
translated by 谷歌翻译
We present the Verifee Dataset: a novel dataset of news articles with fine-grained trustworthiness annotations. We develop a detailed methodology that assesses the texts based on their parameters encompassing editorial transparency, journalist conventions, and objective reporting while penalizing manipulative techniques. We bring aboard a diverse set of researchers from social, media, and computer sciences to overcome barriers and limited framing of this interdisciplinary problem. We collect over $10,000$ unique articles from almost $60$ Czech online news sources. These are categorized into one of the $4$ classes across the credibility spectrum we propose, raging from entirely trustworthy articles all the way to the manipulative ones. We produce detailed statistics and study trends emerging throughout the set. Lastly, we fine-tune multiple popular sequence-to-sequence language models using our dataset on the trustworthiness classification task and report the best testing F-1 score of $0.52$. We open-source the dataset, annotation methodology, and annotators' instructions in full length at https://verifee.ai/research to enable easy build-up work. We believe similar methods can help prevent disinformation and educate in the realm of media literacy.
translated by 谷歌翻译
近年来,我们看到了处理敏感个人信息的应用程序(包括对话系统)的指数增长。这已经揭示了在虚拟环境中有关个人数据保护的极为重要的问题。首先,性能模型应该能够区分敏感内容与中性句子的句子。其次,它应该能够识别其中包含的个人数据类别的类型。这样,可以考虑每个类别的不同隐私处理。在文献中,如果有关于自动敏感数据识别的作品,则通常在没有共同基准的不同域或语言上进行。为了填补这一空白,在这项工作中,我们介绍了SPEDAC,这是一个新的注释基准,用于识别敏感的个人数据类别。此外,我们提供了对数据集的广泛评估,该数据集使用不同的基准和基于Roberta的分类器进行的,这是一种神经体系结构,在检测敏感句子和个人数据类别的分类方面实现了强大的性能。
translated by 谷歌翻译
即使在高度发达的国家,多达15-30%的人口只能理解使用基本词汇编写的文本。他们对日常文本的理解是有限的,这阻止了他们在社会中发挥积极作用,并就医疗保健,法律代表或民主选择做出明智的决定。词汇简化是一项自然语言处理任务,旨在通过更简单地替换复杂的词汇和表达方式来使每个人都可以理解文本,同时保留原始含义。在过去的20年中,它引起了极大的关注,并且已经针对各种语言提出了全自动词汇简化系统。该领域进步的主要障碍是缺乏用于构建和评估词汇简化系统的高质量数据集。我们提出了一个新的基准数据集,用于英语,西班牙语和(巴西)葡萄牙语中的词汇简化,并提供有关数据选择和注释程序的详细信息。这是第一个可直接比较三种语言的词汇简化系统的数据集。为了展示数据集的可用性,我们将两种具有不同体系结构(神经与非神经)的最先进的词汇简化系统适应所有三种语言(英语,西班牙语和巴西葡萄牙语),并评估他们的表演在我们的新数据集中。为了进行更公平的比较,我们使用多种评估措施来捕获系统功效的各个方面,并讨论其优势和缺点。我们发现,最先进的神经词汇简化系统优于所有三种语言中最先进的非神经词汇简化系统。更重要的是,我们发现最先进的神经词汇简化系统对英语的表现要比西班牙和葡萄牙语要好得多。
translated by 谷歌翻译
情绪分析中最突出的任务是为文本分配情绪,并了解情绪如何在语言中表现出来。自然语言处理的一个重要观察结果是,即使没有明确提及情感名称,也可以通过单独参考事件来隐式传达情绪。在心理学中,被称为评估理论的情感理论类别旨在解释事件与情感之间的联系。评估可以被形式化为变量,通过他们认为相关的事件的人们的认知评估来衡量认知评估。其中包括评估事件是否是新颖的,如果该人认为自己负责,是否与自己的目标以及许多其他人保持一致。这样的评估解释了哪些情绪是基于事件开发的,例如,新颖的情况会引起惊喜或不确定后果的人可能引起恐惧。我们在文本中分析了评估理论对情绪分析的适用性,目的是理解注释者是否可以可靠地重建评估概念,如果可以通过文本分类器预测,以及评估概念是否有助于识别情感类别。为了实现这一目标,我们通过要求人们发短信描述触发特定情绪并披露其评估的事件来编译语料库。然后,我们要求读者重建文本中的情感和评估。这种设置使我们能够衡量是否可以纯粹从文本中恢复情绪和评估,并为判断模型的绩效指标提供人体基准。我们将文本分类方法与人类注释者的比较表明,两者都可以可靠地检测出具有相似性能的情绪和评估。我们进一步表明,评估概念改善了文本中情绪的分类。
translated by 谷歌翻译
新闻文章修订历史为新闻文章中的叙事和事实演变提供了线索。为了促进对这一进化的分析,我们介绍了新闻修订历史记录的第一个公开可用的数据集。我们的数据集是大规模和多语言的;它包含120万篇文章,其中有460万款来自三个国家 /地区的英语和法语报纸来源,涵盖了15年的报道(2006 - 2021年)。我们定义文章级的编辑操作:加法,删除,编辑和重构,并开发高准确性提取算法以识别这些动作。为了强调许多编辑操作的事实性质,我们进行的分析表明,添加和删除的句子更可能包含更新事件,主要内容和报价,而不是不变的句子。最后,为了探索编辑操作是否可以预测,我们介绍了三个旨在预测版本更新过程中执行的动作的新任务。我们表明,这些任务对于人类专业而言是可能的,但对于大型NLP模型而言,这些任务具有挑战性。我们希望这可以刺激叙事框架的研究,并为追逐突发新闻的记者提供预测工具。
translated by 谷歌翻译
本次调查绘制了用于分析社交媒体数据的生成方法的研究状态的广泛的全景照片(Sota)。它填补了空白,因为现有的调查文章在其范围内或被约会。我们包括两个重要方面,目前正在挖掘和建模社交媒体的重要性:动态和网络。社会动态对于了解影响影响或疾病的传播,友谊的形成,友谊的形成等,另一方面,可以捕获各种复杂关系,提供额外的洞察力和识别否则将不会被注意的重要模式。
translated by 谷歌翻译
自2020年初以来,Covid-19-19造成了全球重大影响。这给社会带来了很多困惑,尤其是由于错误信息通过社交媒体传播。尽管已经有几项与在社交媒体数据中发现错误信息有关的研究,但大多数研究都集中在英语数据集上。印度尼西亚的COVID-19错误信息检测的研究仍然很少。因此,通过这项研究,我们收集和注释印尼语的数据集,并通过考虑该推文的相关性来构建用于检测COVID-19错误信息的预测模型。数据集构造是由一组注释者进行的,他们标记了推文数据的相关性和错误信息。在这项研究中,我们使用印度培训预培训的语言模型提出了两阶段分类器模型,以进行推文错误信息检测任务。我们还尝试了其他几种基线模型进行文本分类。实验结果表明,对于相关性预测,BERT序列分类器的组合和用于错误信息检测的BI-LSTM的组合优于其他机器学习模型,精度为87.02%。总体而言,BERT利用率有助于大多数预测模型的更高性能。我们发布了高质量的Covid-19错误信息推文语料库,用高通道一致性表示。
translated by 谷歌翻译
通过摩尔维亚岛与罗马尼亚语方言识别的机器学习模型的看似高精度水平和对这一主题的越来越多的研究兴趣,我们提供了摩尔维亚的跟进与罗马尼亚语交叉方言主题识别(MRC)的Vartial共享任务2019年评估运动。共享任务包括两个子任务类型:一个组成,其中包括摩尔维亚和罗马尼亚语方言的区分,其中一个由罗马尼亚语两条方言进行主题分类文件。参与者实现了令人印象深刻的分数,例如,摩尔维亚州的顶级型号与罗马尼亚语方言识别获得了0.895的宏F1得分。我们对人类注释者进行了主观评估,显示人类与机器学习(ML)模型相比,人类可以获得更低的精度率。因此,还不清楚为什么参与者提出的方法达到这种高精度率的方法。我们的目标是理解(i)为什么所提出的方法如此良好地工作(通过可视化鉴别特征)和(ii)这些方法可以在多大程度上保持其高精度水平,例如,这些方法可以保持高精度水平。当我们将文本样本缩短到单个句子时或我们在推理时间使用推文时。我们工作的二级目标是使用集合学习提出改进的ML模型。我们的实验表明,ML模型可以准确地识别方言,即使在句子水平和不同的域中(新闻文章与推文)。我们还分析了最佳性能模型的最辨别特征,在这些模型所采取的决策背后提供了一些解释。有趣的是,我们学习我们以前未知的新的辩证模式或我们的人为注册者。此外,我们进行实验,表明可以通过基于堆叠的集合来改善MRC共享任务的机器学习性能。
translated by 谷歌翻译
学术研究是解决以前从未解决过的问题的探索活动。通过这种性质,每个学术研究工作都需要进行文献审查,以区分其Novelties尚未通过事先作品解决。在自然语言处理中,该文献综述通常在“相关工作”部分下进行。鉴于研究文件的其余部分和引用的论文列表,自动相关工作生成的任务旨在自动生成“相关工作”部分。虽然这项任务是在10年前提出的,但直到最近,它被认为是作为科学多文件摘要问题的变种。然而,即使在今天,尚未标准化了自动相关工作和引用文本生成的问题。在这项调查中,我们进行了一个元研究,从问题制定,数据集收集,方法方法,绩效评估和未来前景的角度来比较相关工作的现有文献,以便为读者洞察到国家的进步 - 最内容的研究,以及如何进行未来的研究。我们还调查了我们建议未来工作要考虑整合的相关研究领域。
translated by 谷歌翻译
Grammatical Error Correction (GEC) is the task of automatically detecting and correcting errors in text. The task not only includes the correction of grammatical errors, such as missing prepositions and mismatched subject-verb agreement, but also orthographic and semantic errors, such as misspellings and word choice errors respectively. The field has seen significant progress in the last decade, motivated in part by a series of five shared tasks, which drove the development of rule-based methods, statistical classifiers, statistical machine translation, and finally neural machine translation systems which represent the current dominant state of the art. In this survey paper, we condense the field into a single article and first outline some of the linguistic challenges of the task, introduce the most popular datasets that are available to researchers (for both English and other languages), and summarise the various methods and techniques that have been developed with a particular focus on artificial error generation. We next describe the many different approaches to evaluation as well as concerns surrounding metric reliability, especially in relation to subjective human judgements, before concluding with an overview of recent progress and suggestions for future work and remaining challenges. We hope that this survey will serve as comprehensive resource for researchers who are new to the field or who want to be kept apprised of recent developments.
translated by 谷歌翻译
我们研究了检查问题的事实,旨在识别给定索赔的真实性。具体而言,我们专注于事实提取和验证(发烧)及其伴随数据集的任务。该任务包括从维基百科检索相关文件(和句子)并验证文件中的信息是否支持或驳斥所索赔的索赔。此任务至关重要,可以是假新闻检测和医疗索赔验证等应用程序块。在本文中,我们以通过以结构化和全面的方式呈现文献来更好地了解任务的挑战。我们通过分析不同方法的技术视角并讨论发热数据集的性能结果,描述了所提出的方法,这是最熟悉的和正式结构化的数据集,就是事实提取和验证任务。我们还迄今为止迄今为止确定句子检索组件的有益损失函数的最大实验研究。我们的分析表明,采样负句对于提高性能并降低计算复杂性很重要。最后,我们描述了开放的问题和未来的挑战,我们激励了未来的任务研究。
translated by 谷歌翻译
鉴于社交媒体消费的增加,估计社交媒体使用者的政治倾向是一个具有挑战性且越来越紧迫的问题。我们介绍了retweet-bert,这是一个简单且可扩展的模型,以估算Twitter用户的政治倾向。 retweet-bert利用转发网络结构和用户配置文件描述中使用的语言。我们的假设源于具有类似意识形态的人的网络和语言学的模式。 retweet-bert表现出对其他最先进的基线的竞争性能,在最近的两个Twitter数据集(COVID-19数据集和2020年美国总统选举数据集)中,达到96%-97%的宏观F1。我们还执行手动验证,以验证培训数据中不在培训数据中的用户的retweet-bert的性能。最后,在Covid-19的案例研究中,我们说明了Twitter上政治回声室的存在,并表明它主要存在于正确的倾斜用户中。我们的代码是开源的,我们的数据已公开可用。
translated by 谷歌翻译
Supervised approaches generally rely on majority-based labels. However, it is hard to achieve high agreement among annotators in subjective tasks such as hate speech detection. Existing neural network models principally regard labels as categorical variables, while ignoring the semantic information in diverse label texts. In this paper, we propose AnnoBERT, a first-of-its-kind architecture integrating annotator characteristics and label text with a transformer-based model to detect hate speech, with unique representations based on each annotator's characteristics via Collaborative Topic Regression (CTR) and integrate label text to enrich textual representations. During training, the model associates annotators with their label choices given a piece of text; during evaluation, when label information is not available, the model predicts the aggregated label given by the participating annotators by utilising the learnt association. The proposed approach displayed an advantage in detecting hate speech, especially in the minority class and edge cases with annotator disagreement. Improvement in the overall performance is the largest when the dataset is more label-imbalanced, suggesting its practical value in identifying real-world hate speech, as the volume of hate speech in-the-wild is extremely small on social media, when compared with normal (non-hate) speech. Through ablation studies, we show the relative contributions of annotator embeddings and label text to the model performance, and tested a range of alternative annotator embeddings and label text combinations.
translated by 谷歌翻译
食源性疾病是一个严重但可以预防的公共卫生问题 - 延迟发现相关的暴发导致生产力损失,昂贵的召回,公共安全危害甚至生命丧失。尽管社交媒体是识别未报告的食源性疾病的有前途的来源,但缺乏标记的数据集来开发有效的爆发检测模型。为了加快基于机器学习的疫苗爆发检测模型的开发,我们提出了推文-FID(Tweet-Foodborne疾病检测),这是第一个用于多种食源性疾病事件检测任务的公开注释的数据集。从Twitter收集的Tweet-FID带有三个方面:Tweet类,实体类型和老虎机类型,并带有专家以及众包工人生产的标签。我们介绍了利用这三个方面的几个域任务:文本相关性分类(TRC),实体提及检测(EMD)和插槽填充(SF)。我们描述了用于支持这些任务模型开发的数据集设计,创建和标签的端到端方法。提供了这些任务的全面结果,以利用Tweet-FID数据集上的最新单项和多任务深度学习方法。该数据集为未来的Foodborne爆发检测提供了机会。
translated by 谷歌翻译
The widespread of offensive content online, such as hate speech and cyber-bullying, is a global phenomenon. This has sparked interest in the artificial intelligence (AI) and natural language processing (NLP) communities, motivating the development of various systems trained to detect potentially harmful content automatically. These systems require annotated datasets to train the machine learning (ML) models. However, with a few notable exceptions, most datasets on this topic have dealt with English and a few other high-resource languages. As a result, the research in offensive language identification has been limited to these languages. This paper addresses this gap by tackling offensive language identification in Sinhala, a low-resource Indo-Aryan language spoken by over 17 million people in Sri Lanka. We introduce the Sinhala Offensive Language Dataset (SOLD) and present multiple experiments on this dataset. SOLD is a manually annotated dataset containing 10,000 posts from Twitter annotated as offensive and not offensive at both sentence-level and token-level, improving the explainability of the ML models. SOLD is the first large publicly available offensive language dataset compiled for Sinhala. We also introduce SemiSOLD, a larger dataset containing more than 145,000 Sinhala tweets, annotated following a semi-supervised approach.
translated by 谷歌翻译