传统的基于物理的建模是用于复杂非线性系统(如自动水下车辆(AUV))的控制设计中的耗时瓶颈。相比之下,纯粹的数据驱动模型虽然方便且迅速地获得,但需要大量的观察结果,并且缺乏针对安全至关重要系统的操作保证。利用可用的部分表征动态的数据驱动模型具有在典型的数据限制方案中为高价值复杂系统提供可靠的系统模型,从而避免了数月的数月昂贵的专家建模时间。在这项工作中,我们探索了专家模型和纯数据驱动建模之间的中间场。我们提出了面向控制的参数模型,具有不同水平的域意识,这些模型利用已知的系统结构和先前的物理知识来创建约束的深神经动力学系统模型。我们采用通用微分方程来构建AUV动力学的数据驱动的黑框和灰色框表示。此外,我们探索了一种混合制剂,该制剂明确模拟与不完美的灰色盒模型相关的残余误差。我们将学习模型的预测性能比较了初始条件和控制输入的不同分布的预测性能,以评估其准确性,概括和对控制的适用性。
translated by 谷歌翻译
物理运动模型为车辆运动提供了可解释的预测。但是,某些模型参数(例如与空气动力学和流体动力学相关的参数)非常昂贵,并且通常仅大致近似降低预测准确性。经常性的神经网络以低成本的价格实现了高预测准确性,因为它们可以使用车辆常规操作期间收集的廉价测量值,但是它们的结果很难解释。为了精确预测车辆状态,没有昂贵的物理参数测量,我们提出了一种混合方法,结合了深度学习和物理运动模型,包括新型的两阶段训练程序。我们通过将深神经网络的输出范围限制为混合模型的一部分来实现可解释性,这将神经网络引入的不确定性限制为已知数量。我们已经评估了船用和四轮运动的用例。结果表明,与现有的深度学习方法相比,我们的混合模型可以提高模型的解释性,而准确性没有降低。
translated by 谷歌翻译
随着数据的不断增加,将现代机器学习方法应用于建模和控制等领域的兴趣爆炸。但是,尽管这种黑盒模型具有灵活性和令人惊讶的准确性,但仍然很难信任它们。结合两种方法的最新努力旨在开发灵活的模型,这些模型仍然可以很好地推广。我们称为混合分析和建模(HAM)的范式。在这项工作中,我们调查了使用数据驱动模型纠正基于错误的物理模型的纠正源术语方法(COSTA)。这使我们能够开发出可以进行准确预测的模型,即使问题的基本物理学尚未得到充分理解。我们将Costa应用于铝电解电池中的Hall-H \'Eroult工艺。我们证明该方法提高了准确性和预测稳定性,从而产生了总体可信赖的模型。
translated by 谷歌翻译
机器人动态的准确模型对于新颖的操作条件安全和稳定控制和概括至关重要。然而,即使在仔细参数调谐后,手工设计的模型也可能是不够准确的。这激励了使用机器学习技术在训练集的状态控制轨迹上近似机器人动力学。根据其SE(3)姿势和广义速度,并满足能量原理的保护,描述了许多机器人的动态,包括地面,天线和水下车辆。本文提出了在神经常规差分方程(ODE)网络结构的SE(3)歧管上的HamiltonIAN制剂,以近似刚体的动态。与黑匣子颂网络相比,我们的配方通过施工保证了总节能。我们为学习的学习,潜在的SE(3)Hamiltonian动力学开发能量整形和阻尼注射控制,以实现具有各种平台的稳定和轨迹跟踪的统一方法,包括摆锤,刚体和四极其系统。
translated by 谷歌翻译
在这项工作中,我们考虑使用应用于四逆床控制的模型预测控制(MPC)导出和加入准确动态模型的问题。 MPC依赖于精确的动态模型来实现所需的闭环性能。然而,在复杂系统中存在不确定性以及他们在其运行的环境中的存在在获得对系统动态的充分准确表示方面构成挑战。在这项工作中,我们利用深度学习工具,基于知识的神经常规方程(KNODE),增强了从第一原理获得的模型。由此产生的混合模型包括来自模拟或现实世界实验数据的标称第一原理模型和神经网络。使用四轮压力机,我们将混合模型用于针对最先进的高斯过程(GP)模型,并表明混合模型提供了Quadrotor动态的更准确的预测,并且能够概括超出训练数据。为了提高闭环性能,混合模型集成到新的MPC框架中,称为KNODE-MPC。结果表明,就轨迹跟踪性能而言,综合框架在物理实验中达到了60.2%的仿真和21%以上。
translated by 谷歌翻译
Relying on recent research results on Neural ODEs, this paper presents a methodology for the design of state observers for nonlinear systems based on Neural ODEs, learning Luenberger-like observers and their nonlinear extension (Kazantzis-Kravaris-Luenberger (KKL) observers) for systems with partially-known nonlinear dynamics and fully unknown nonlinear dynamics, respectively. In particular, for tuneable KKL observers, the relationship between the design of the observer and its trade-off between convergence speed and robustness is analysed and used as a basis for improving the robustness of the learning-based observer in training. We illustrate the advantages of this approach in numerical simulations.
translated by 谷歌翻译
准确地建模四极管的系统动力学对于保证敏捷,安全和稳定的导航至关重要。该模型需要在多个飞行机制和操作条件下捕获系统行为,包括产生高度非线性效应的那些,例如空气动力和扭矩,转子相互作用或可能的系统配置修改。经典方法依靠手工制作的模型并努力概括和扩展以捕获这些效果。在本文中,我们介绍了一种新型的物理启发的时间卷积网络(PI-TCN)方法,用于学习四极管的系统动力学,纯粹是从机器人体验中学习的。我们的方法结合了稀疏时间卷积的表达力和密集的进料连接,以进行准确的系统预测。此外,物理限制嵌入了培训过程中,以促进网络对培训分布以外数据的概括功能。最后,我们设计了一种模型预测控制方法,该方法结合了学习的动力学,以完全利用学习范围的方式,以完全利用学习模型预测的准确闭环轨迹跟踪。实验结果表明,我们的方法可以准确地从数据中提取四四光动力学的结构,从而捕获对经典方法隐藏的效果。据我们所知,这是物理启发的深度学习成功地应用于时间卷积网络和系统识别任务,同时同时实现了预测性控制。
translated by 谷歌翻译
本文介绍了微型拍打翼无人机的数据驱动的最佳控制政策。首先,根据动力学的几何公式​​计算一组最佳轨迹,该动力学的几何公式​​捕获了大角度拍打运动与准稳态空气动力学之间的非线性耦合。然后,根据模仿学习的框架,它被转换为反馈控制系统。特别是,通过学习过程加入了附加的约束,以增强所得控制动力学的稳定性。与常规方法相比,所提出的约束模仿学习消除了在线生成其他最佳轨迹的需求,而无需牺牲稳定性。因此,计算效率大大提高。此外,这建立了第一个非线性控制系统,该系统稳定了旋转翼航空车辆的耦合纵向和横向动力学,而无需依赖平均或线性化。这些由数值示例说明,该示例的模拟模型受君主蝴蝶的启发。
translated by 谷歌翻译
最近的研究表明,监督学习可能是设计用于高维非线性动态系统的最佳反馈控制器的有效工具。但是神经网络控制器的行为仍然不太了解。特别是,一些具有高测试精度的神经网络甚至无法局部稳定动态系统。为了应对这一挑战,我们提出了几种新型的神经网络体系结构,我们显示出保证局部渐近稳定性,同时保留了学习最佳反馈政策半全球的近似能力。通过两个高维非线性最佳控制问题的数值模拟,将所提出的体系结构与标准的神经网络反馈控制器进行了比较:稳定不稳定的汉堡型部分偏差方程,以及无人驾驶汽车的高度和课程跟踪。模拟表明,即使经过良好的训练,标准的神经网络也可能无法稳定动力学,而所提出的体系结构始终至少在本地稳定。此外,发现拟议的控制器在测试中几乎是最佳的。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
动态系统参见在物理,生物学,化学等自然科学中广泛使用,以及电路分析,计算流体动力学和控制等工程学科。对于简单的系统,可以通过应用基本物理法来导出管理动态的微分方程。然而,对于更复杂的系统,这种方法变得非常困难。数据驱动建模是一种替代范式,可以使用真实系统的观察来了解系统的动态的近似值。近年来,对数据驱动的建模技术的兴趣增加,特别是神经网络已被证明提供了解决广泛任务的有效框架。本文提供了使用神经网络构建动态系统模型的不同方式的调查。除了基础概述外,我们还审查了相关的文献,概述了这些建模范式必须克服的数值模拟中最重要的挑战。根据审查的文献和确定的挑战,我们提供了关于有前途的研究领域的讨论。
translated by 谷歌翻译
预测在环境中只有部分了解其动态的综合动态现象是各种科学领域的普遍存在问题。虽然纯粹的数据驱动方法在这种情况下可以说是不充分的,但是基于标准的物理建模的方法往往是过于简单的,诱导不可忽略的错误。在这项工作中,我们介绍了适当性框架,是一种具有深度数据驱动模型的微分方程所描述的不完整物理动态的原则方法。它包括将动态分解为两个组件:对我们有一些先验知识的动态的物理组件,以及物理模型错误的数据驱动组件核对。仔细制定学习问题,使得物理模型尽可能多地解释数据,而数据驱动组件仅描述了物理模型不能捕获的信息,不再少。这不仅为这种分解提供了存在和唯一性,而且还确保了可解释性和益处泛化。在三个重要用例中进行的实验,每个代表不同的现象,即反应 - 扩散方程,波动方程和非线性阻尼摆锤,表明,空间程度可以有效地利用近似物理模型来准确地预测系统的演变并正确识别相关的物理参数。
translated by 谷歌翻译
在许多学科中,动态系统的数据信息预测模型的开发引起了广泛的兴趣。我们提出了一个统一的框架,用于混合机械和机器学习方法,以从嘈杂和部分观察到的数据中识别动态系统。我们将纯数据驱动的学习与混合模型进行比较,这些学习结合了不完善的域知识。我们的公式与所选的机器学习模型不可知,在连续和离散的时间设置中都呈现,并且与表现出很大的内存和错误的模型误差兼容。首先,我们从学习理论的角度研究无内存线性(W.R.T.参数依赖性)模型误差,从而定义了过多的风险和概括误差。对于沿阵行的连续时间系统,我们证明,多余的风险和泛化误差都通过与T的正方形介于T的术语(指定训练数据的时间间隔)的术语界定。其次,我们研究了通过记忆建模而受益的方案,证明了两类连续时间复发性神经网络(RNN)的通用近似定理:两者都可以学习与内存有关的模型误差。此外,我们将一类RNN连接到储层计算,从而将学习依赖性错误的学习与使用随机特征在Banach空间之间进行监督学习的最新工作联系起来。给出了数值结果(Lorenz '63,Lorenz '96多尺度系统),以比较纯粹的数据驱动和混合方法,发现混合方法较少,渴望数据较少,并且更有效。最后,我们从数值上证明了如何利用数据同化来从嘈杂,部分观察到的数据中学习隐藏的动态,并说明了通过这种方法和培训此类模型来表示记忆的挑战。
translated by 谷歌翻译
差分方程管理的学习动态对于预测和控制科学和工程系统来说至关重要。神经常规方程(节点)是一种与微分方程集成的深度学习模型,最近是由于其对不规则样本的鲁棒性及其对高维输入的灵活性而流行的学习动态。然而,节点的训练对数值求解器的精度敏感,这使得节点的收敛不稳定,特别是对于不稳定的动态系统。在本文中,为了减少对数值求解器的依赖,我们建议提高节点训练中的监督信号。具体地,我们预先训练神经差分运算符(NDO)以输出衍生物的估计用作额外的监督信号。 NDO在一类基础函数上预先培训,并将这些功能的轨迹样本之间的映射学习到其衍生物。为了利用来自NDO的轨迹信号和估计的衍生工具,我们提出了一种称为NDO-Node的算法,其中损耗函数包含两个术语:真正轨迹样本的适应性以及由输出的估计衍生物的适应度预先训练的NDO。各种动力学的实验表明,我们提出的NDO-Node可以一致地用一个预先训练的NDO来改善预测精度。特别是对于僵硬的杂散,我们观察到与其他正则化方法相比,NDO-Node可以更准确地捕获动态的过渡。
translated by 谷歌翻译
基于哈密顿配方的混合机器学习最近已成功证明了简单的机械系统。在这项工作中,我们在简单的质量弹簧系统和更复杂,更现实的系统上强调方法,具有多个内部和外部端口,包括具有多个连接储罐的系统。我们量化各种条件下的性能,并表明施加不同的假设会极大地影响性能,突出该方法的优势和局限性。我们证明,哈米尔顿港神经网络可以扩展到具有州依赖性端口的更高维度。我们考虑学习具有已知和未知外部端口的系统。哈米尔顿港的公式允许检测偏差,并在删除偏差时仍然提供有效的模型。最后,我们提出了一种对称的高级整合方案,以改善稀疏和嘈杂数据的训练。
translated by 谷歌翻译
深度学习方法的应用加快了挑战性电流问题的分辨率,最近显示出令人鼓舞的结果。但是,电力系统动力学不是快照,稳态操作。必须考虑这些动力学,以确保这些模型提供的最佳解决方案遵守实用的动力约束,避免频率波动和网格不稳定性。不幸的是,由于其高计算成本,基于普通或部分微分方程的动态系统模型通常不适合在控制或状态估计中直接应用。为了应对这些挑战,本文介绍了一种机器学习方法,以近乎实时近似电力系统动态的行为。该拟议的框架基于梯度增强的物理知识的神经网络(GPINNS),并编码有关电源系统的基本物理定律。拟议的GPINN的关键特征是它的训练能力而无需生成昂贵的培训数据。该论文说明了在单机无限总线系统中提出的方法在预测转子角度和频率的前进和反向问题中的潜力,以及不确定的参数,例如惯性和阻尼,以展示其在一系列电力系统应用中的潜力。
translated by 谷歌翻译
从非线性系统中提取预测模型是科学机器学习中的一个中心任务。一个关键问题是现代数据驱动方法与第一个原则之间的对帐。尽管机器学习技术快速进展,但将域知识嵌入到数据驱动的模型中仍然是一个挑战。在这项工作中,我们为基于观察的非线性系统提取了一个通用学习框架,用于从非线性系统中提取预测模型。我们的框架可以容易地纳入第一个原理知识,因为它自然地模拟非线性系统作为连续时间系统。这两种都改善了提取的模型的外推功率,并减少了培训所需的数据量。此外,我们的框架还具有对观察噪声的稳健和适用性的优点,不规则采样数据。我们通过学习各种系统的预测模型来展示我们方案的有效性,包括普拉登·德隆振荡器,Lorenz系统和Kuramoto-Sivashinsky方程。对于Lorenz系统,并入不同类型的域知识,以展示数据驱动系统识别中的知识强度。
translated by 谷歌翻译
已经使用基于物理学的模型对非全面车辆运动进行了广泛的研究。使用这些模型时,使用线性轮胎模型来解释车轮/接地相互作用时的通用方法,因此可能无法完全捕获各种环境下的非线性和复杂动力学。另一方面,神经网络模型已在该域中广泛使用,证明了功能强大的近似功能。但是,这些黑盒学习策略完全放弃了现有的知名物理知识。在本文中,我们无缝将深度学习与完全不同的物理模型相结合,以赋予神经网络具有可用的先验知识。所提出的模型比大边距的香草神经网络模型显示出更好的概括性能。我们还表明,我们的模型的潜在特征可以准确地表示侧向轮胎力,而无需进行任何其他训练。最后,我们使用从潜在特征得出的本体感受信息开发了一种风险感知的模型预测控制器。我们在未知摩擦下的两个自动驾驶任务中验证了我们的想法,表现优于基线控制框架。
translated by 谷歌翻译
标准的神经网络可以近似一般的非线性操作员,要么通过数学运算符的组合(例如,在对流 - 扩散反应部分微分方程中)的组合,要么仅仅是黑匣子,例如黑匣子,例如一个系统系统。第一个神经操作员是基于严格的近似理论于2019年提出的深层操作员网络(DeepOnet)。从那时起,已经发布了其他一些较少的一般操作员,例如,基于图神经网络或傅立叶变换。对于黑匣子系统,对神经操作员的培训仅是数据驱动的,但是如果知道管理方程式可以在培训期间将其纳入损失功能,以开发物理知识的神经操作员。神经操作员可以用作设计问题,不确定性量化,自主系统以及几乎任何需要实时推断的应用程序中的代替代物。此外,通过将它们与相对轻的训练耦合,可以将独立的预训练deponets用作复杂多物理系统的组成部分。在这里,我们介绍了Deponet,傅立叶神经操作员和图神经操作员的评论,以及适当的扩展功能扩展,并突出显示它们在计算机械师中的各种应用中的实用性,包括多孔媒体,流体力学和固体机制, 。
translated by 谷歌翻译
Effective inclusion of physics-based knowledge into deep neural network models of dynamical systems can greatly improve data efficiency and generalization. Such a-priori knowledge might arise from physical principles (e.g., conservation laws) or from the system's design (e.g., the Jacobian matrix of a robot), even if large portions of the system dynamics remain unknown. We develop a framework to learn dynamics models from trajectory data while incorporating a-priori system knowledge as inductive bias. More specifically, the proposed framework uses physics-based side information to inform the structure of the neural network itself, and to place constraints on the values of the outputs and the internal states of the model. It represents the system's vector field as a composition of known and unknown functions, the latter of which are parametrized by neural networks. The physics-informed constraints are enforced via the augmented Lagrangian method during the model's training. We experimentally demonstrate the benefits of the proposed approach on a variety of dynamical systems -- including a benchmark suite of robotics environments featuring large state spaces, non-linear dynamics, external forces, contact forces, and control inputs. By exploiting a-priori system knowledge during training, the proposed approach learns to predict the system dynamics two orders of magnitude more accurately than a baseline approach that does not include prior knowledge, given the same training dataset.
translated by 谷歌翻译