准确地建模四极管的系统动力学对于保证敏捷,安全和稳定的导航至关重要。该模型需要在多个飞行机制和操作条件下捕获系统行为,包括产生高度非线性效应的那些,例如空气动力和扭矩,转子相互作用或可能的系统配置修改。经典方法依靠手工制作的模型并努力概括和扩展以捕获这些效果。在本文中,我们介绍了一种新型的物理启发的时间卷积网络(PI-TCN)方法,用于学习四极管的系统动力学,纯粹是从机器人体验中学习的。我们的方法结合了稀疏时间卷积的表达力和密集的进料连接,以进行准确的系统预测。此外,物理限制嵌入了培训过程中,以促进网络对培训分布以外数据的概括功能。最后,我们设计了一种模型预测控制方法,该方法结合了学习的动力学,以完全利用学习范围的方式,以完全利用学习模型预测的准确闭环轨迹跟踪。实验结果表明,我们的方法可以准确地从数据中提取四四光动力学的结构,从而捕获对经典方法隐藏的效果。据我们所知,这是物理启发的深度学习成功地应用于时间卷积网络和系统识别任务,同时同时实现了预测性控制。
translated by 谷歌翻译
在这项工作中,我们考虑使用应用于四逆床控制的模型预测控制(MPC)导出和加入准确动态模型的问题。 MPC依赖于精确的动态模型来实现所需的闭环性能。然而,在复杂系统中存在不确定性以及他们在其运行的环境中的存在在获得对系统动态的充分准确表示方面构成挑战。在这项工作中,我们利用深度学习工具,基于知识的神经常规方程(KNODE),增强了从第一原理获得的模型。由此产生的混合模型包括来自模拟或现实世界实验数据的标称第一原理模型和神经网络。使用四轮压力机,我们将混合模型用于针对最先进的高斯过程(GP)模型,并表明混合模型提供了Quadrotor动态的更准确的预测,并且能够概括超出训练数据。为了提高闭环性能,混合模型集成到新的MPC框架中,称为KNODE-MPC。结果表明,就轨迹跟踪性能而言,综合框架在物理实验中达到了60.2%的仿真和21%以上。
translated by 谷歌翻译
模型预测控制(MPC)已成为高性能自治系统嵌入式控制的流行框架。但是,为了使用MPC实现良好的控制性能,准确的动力学模型是关键。为了维持实时操作,嵌入式系统上使用的动力学模型仅限于简单的第一原则模型,该模型实质上限制了其代表性。与此类简单模型相反,机器学习方法,特别是神经网络,已被证明可以准确地建模复杂的动态效果,但是它们的较大的计算复杂性阻碍了与快速实时迭代环路的组合。通过这项工作,我们提出了实时神经MPC,这是一个将大型复杂的神经网络体系结构作为动态模型的框架,在模型预测性控制管道中。 ,展示了所描述的系统的功能,可以使用基于梯度的在线优化MPC运行以前不可行的大型建模能力。与在线优化MPC中神经网络的先前实现相比,我们可以利用嵌入式平台上50Hz实时窗口中的4000倍的型号。此外,与没有神经网络动力学的最新MPC方法相比,我们通过将位置跟踪误差降低多达82%,从而显示了对现实世界问题的可行性。
translated by 谷歌翻译
在这项工作中,我们考虑了在线环境中提高模型预测控制(MPC)动态模型准确性的任务。即使可以学习预测模型并将其应用于基于模型的控制器,但这些模型也经常离线学习。在此离线环境中,首先收集培训数据,并通过详细的培训程序来学习预测模型。将模型训练至所需的精度后,然后将其部署到模型预测控制器中。但是,由于模型是离线学习的,因此它不适合部署过程中观察到的干扰或模型错误。为了提高模型和控制器的适应性,我们提出了一个在线动力学学习框架,该框架不断提高部署过程中动态模型的准确性。我们采用基于知识的神经普通微分方程(KNODE)作为动态模型,并使用受转移学习启发的技术来不断提高模型的准确性。我们通过四型机器人证明了框架的功效,并在模拟和物理实验中验证框架。结果表明,所提出的方法能够说明可能段时间变化的干扰,同时保持良好的轨迹跟踪性能。
translated by 谷歌翻译
已经使用基于物理学的模型对非全面车辆运动进行了广泛的研究。使用这些模型时,使用线性轮胎模型来解释车轮/接地相互作用时的通用方法,因此可能无法完全捕获各种环境下的非线性和复杂动力学。另一方面,神经网络模型已在该域中广泛使用,证明了功能强大的近似功能。但是,这些黑盒学习策略完全放弃了现有的知名物理知识。在本文中,我们无缝将深度学习与完全不同的物理模型相结合,以赋予神经网络具有可用的先验知识。所提出的模型比大边距的香草神经网络模型显示出更好的概括性能。我们还表明,我们的模型的潜在特征可以准确地表示侧向轮胎力,而无需进行任何其他训练。最后,我们使用从潜在特征得出的本体感受信息开发了一种风险感知的模型预测控制器。我们在未知摩擦下的两个自动驾驶任务中验证了我们的想法,表现优于基线控制框架。
translated by 谷歌翻译
空中操纵的生长场通常依赖于完全致动的或全向微型航空车(OMAV),它们可以在与环境接触时施加任意力和扭矩。控制方法通常基于无模型方法,将高级扳手控制器与执行器分配分开。如有必要,在线骚扰观察员拒绝干扰。但是,虽然是一般,但这种方法通常会产生次优控制命令,并且不能纳入平台设计给出的约束。我们提出了两种基于模型的方法来控制OMAV,以实现轨迹跟踪的任务,同时拒绝干扰。第一个通过从实验数据中学到的模型来优化扳手命令并补偿模型错误。第二个功能优化了低级执行器命令,允许利用分配无空格并考虑执行器硬件给出的约束。在现实世界实验中显示和评估两种方法的疗效和实时可行性。
translated by 谷歌翻译
二次运动的准确轨迹跟踪控制对于在混乱环境中的安全导航至关重要。但是,由于非线性动态,复杂的空气动力学效应和驱动约束,这在敏捷飞行中具有挑战性。在本文中,我们通过经验比较两个最先进的控制框架:非线性模型预测控制器(NMPC)和基于差异的控制器(DFBC),通过以速度跟踪各种敏捷轨迹,最多20 m/s(即72 km/h)。比较在模拟和现实世界环境中进行,以系统地评估这两种方法从跟踪准确性,鲁棒性和计算效率的方面。我们以更高的计算时间和数值收敛问题的风险来表明NMPC在跟踪动态不可行的轨迹方面的优势。对于这两种方法,我们还定量研究了使用增量非线性动态反演(INDI)方法添加内环控制器的效果,以及添加空气动力学阻力模型的效果。我们在世界上最大的运动捕获系统之一中进行的真实实验表明,NMPC和DFBC的跟踪误差降低了78%以上,这表明有必要使用内环控制器和用于敏捷轨迹轨迹跟踪的空气动力学阻力模型。
translated by 谷歌翻译
子格式微型航空车(MAV)中的准确而敏捷的轨迹跟踪是具有挑战性的,因为机器人的小规模会引起大型模型不确定性,要求强大的反馈控制器,而快速的动力学和计算约束则阻止了计算上昂贵的策略的部署。在这项工作中,我们提出了一种在MIT SoftFly(一个子)MAV(0.7克)上进行敏捷和计算有效轨迹跟踪的方法。我们的策略采用了级联的控制方案,在该方案中,自适应态度控制器与受过训练的神经网络政策相结合,以模仿轨迹跟踪可靠的管模型模型预测控制器(RTMPC)。神经网络政策是使用我们最近的工作获得的,这使该政策能够保留RTMPC的稳健性,但以其计算成本的一小部分。我们通过实验评估我们的方法,即使在更具挑战性的操作中,达到均方根误差也低于1.8 cm,与我们先前的工作相比,最大位置误差减少了60%,并证明了对大型外部干扰的稳健性
translated by 谷歌翻译
Legged robots pose one of the greatest challenges in robotics. Dynamic and agile maneuvers of animals cannot be imitated by existing methods that are crafted by humans. A compelling alternative is reinforcement learning, which requires minimal craftsmanship and promotes the natural evolution of a control policy. However, so far, reinforcement learning research for legged robots is mainly limited to simulation, and only few and comparably simple examples have been deployed on real systems. The primary reason is that training with real robots, particularly with dynamically balancing systems, is complicated and expensive. In the present work, we report a new method for training a neural network policy in simulation and transferring it to a state-of-the-art legged system, thereby we leverage fast, automated, and cost-effective data generation schemes. The approach is applied to the ANYmal robot, a sophisticated medium-dog-sized quadrupedal system. Using policies trained in simulation, the quadrupedal machine achieves locomotion skills that go beyond what had been achieved with prior methods: ANYmal is capable of precisely and energy-efficiently following high-level body velocity commands, running faster than ever before, and recovering from falling even in complex configurations.
translated by 谷歌翻译
机器人系统的控制设计很复杂,通常需要解决优化才能准确遵循轨迹。在线优化方法(例如模型预测性控制(MPC))已被证明可以实现出色的跟踪性能,但需要高计算能力。相反,基于学习的离线优化方法,例如加固学习(RL),可以在机器人上快速有效地执行,但几乎不匹配MPC在轨迹跟踪任务中的准确性。在具有有限计算的系统(例如航空车)中,必须在执行时间有效的精确控制器。我们提出了一种分析策略梯度(APG)方法来解决此问题。 APG通过在跟踪误差上以梯度下降的速度训练控制器来利用可区分的模拟器的可用性。我们解决了通过课程学习和实验经常在广泛使用的控制基准,Cartpole和两个常见的空中机器人,一个四极管和固定翼无人机上进行的训练不稳定性。在跟踪误差方面,我们提出的方法优于基于模型和无模型的RL方法。同时,它达到与MPC相似的性能,同时需要少于数量级的计算时间。我们的工作为APG作为机器人技术的有前途的控制方法提供了见解。为了促进对APG的探索,我们开放代码并在https://github.com/lis-epfl/apg_traightory_tracking上提供。
translated by 谷歌翻译
敏锐环境中的敏捷四号飞行有可能彻底改变运输,运输和搜索和救援应用。非线性模型预测控制(NMPC)最近显示了敏捷四足电池控制的有希望的结果,但依赖于高度准确的模型以获得最大性能。因此,模拟了非模型复杂空气动力学效果,不同有效载荷和参数错配的形式的不确定性将降低整体系统性能。本文提出了L1-NMPC,一种新型混合自适应NMPC,用于在线学习模型不确定性,并立即弥补它们,大大提高了与非自适应基线的性能,最小计算开销。我们所提出的体系结构推广到许多不同的环境,我们评估风,未知的有效载荷和高度敏捷的飞行条件。所提出的方法展示了巨大的灵活性和鲁棒性,在大未知干扰下的非自适应NMPC和没有任何增益调整的情况下,超过90%的跟踪误差减少。此外,相同的控制器具有相同的增益可以准确地飞行高度敏捷的赛车轨迹,该轨迹展示最高速度为70公里/小时,相对于非自适应NMPC基线提供约50%的跟踪性能提高。
translated by 谷歌翻译
策略搜索和模型预测控制〜(MPC)是机器人控制的两个不同范式:策略搜索具有使用经验丰富的数据自动学习复杂策略的强度,而MPC可以使用模型和轨迹优化提供最佳控制性能。开放的研究问题是如何利用并结合两种方法的优势。在这项工作中,我们通过使用策略搜索自动选择MPC的高级决策变量提供答案,这导致了一种新的策略搜索 - 用于模型预测控制框架。具体地,我们将MPC作为参数化控制器配制,其中难以优化的决策变量表示为高级策略。这种制定允许以自我监督的方式优化政策。我们通过专注于敏捷无人机飞行中的具有挑战性的问题来验证这一框架:通过快速的盖茨飞行四轮车。实验表明,我们的控制器在模拟和现实世界中实现了鲁棒和实时的控制性能。拟议的框架提供了合并学习和控制的新视角。
translated by 谷歌翻译
模型预测控制(MPC)是一种最先进的(SOTA)控制技术,需要迭代地解决硬约束优化问题。对于不确定的动态,基于分析模型的强大MPC施加了其他约束,从而增加了问题的硬度。当需要在较少的时间内需要更多计算时,问题会加剧性能至关重要的应用程序。过去已经提出了数据驱动的回归方法,例如神经网络,以近似系统动力学。但是,在没有符号分析先验的情况下,此类模型依赖于大量标记的数据。这会产生非平凡的培训间接开销。物理知识的神经网络(PINN)以合理的精度获得了近似的普通微分方程(ODE)的非线性系统的吸引力。在这项工作中,我们通过PINNS(RAMP-NET)提出了一个强大的自适应MPC框架,该框架使用了一种神经网络,部分从简单的ODE中训练,部分是由数据训练的。物理损失用于学习代表理想动态的简单odes。访问损失函数内部的分析功能是正常化的,为参数不确定性执行了可靠的行为。另一方面,定期数据丢失用于适应剩余的干扰(非参数不确定性),在数学建模过程中未被误解。实验是在模拟环境中进行的,以进行四轨的轨迹跟踪。与两种基于SOTA回归的MPC方法相比,我们报告了7.8%至43.2%和8.04%和8.04%至61.5%的跟踪误差的降低。
translated by 谷歌翻译
过去半年来,从控制和强化学习社区的真实机器人部署的安全学习方法的贡献数量急剧上升。本文提供了一种简洁的但整体审查,对利用机器学习实现的最新进展,以实现在不确定因素下的安全决策,重点是统一控制理论和加固学习研究中使用的语言和框架。我们的评论包括:基于学习的控制方法,通过学习不确定的动态,加强学习方法,鼓励安全或坚固性的加固学习方法,以及可以正式证明学习控制政策安全的方法。随着基于数据和学习的机器人控制方法继续获得牵引力,研究人员必须了解何时以及如何最好地利用它们在安全势在必行的现实情景中,例如在靠近人类的情况下操作时。我们突出了一些开放的挑战,即将在未来几年推动机器人学习领域,并强调需要逼真的物理基准的基准,以便于控制和加固学习方法之间的公平比较。
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
Applications of force control and motion planning often rely on an inverse dynamics model to represent the high-dimensional dynamic behavior of robots during motion. The widespread occurrence of low-velocity, small-scale, locally isotropic motion (LIMO) typically complicates the identification of appropriate models due to the exaggeration of dynamic effects and sensory perturbation caused by complex friction and phenomena of hysteresis, e.g., pertaining to joint elasticity. We propose a hybrid model learning base architecture combining a rigid body dynamics model identified by parametric regression and time-series neural network architectures based on multilayer-perceptron, LSTM, and Transformer topologies. Further, we introduce novel joint-wise rotational history encoding, reinforcing temporal information to effectively model dynamic hysteresis. The models are evaluated on a KUKA iiwa 14 during algorithmically generated locally isotropic movements. Together with the rotational encoding, the proposed architectures outperform state-of-the-art baselines by a magnitude of 10$^3$ yielding an RMSE of 0.14 Nm. Leveraging the hybrid structure and time-series encoding capabilities, our approach allows for accurate torque estimation, indicating its applicability in critically force-sensitive applications during motion sequences exceeding the capacity of conventional inverse dynamics models while retaining trainability in face of scarce data and explainability due to the employed physics model prior.
translated by 谷歌翻译
现代机器人系统具有卓越的移动性和机械技能,使其适合在现实世界场景中使用,其中需要与重物和精确的操纵能力进行互动。例如,具有高有效载荷容量的腿机器人可用于灾害场景,以清除危险物质或携带受伤的人。因此,可以开发能够使复杂机器人能够准确地执行运动和操作任务的规划算法。此外,需要在线适应机制,需要新的未知环境。在这项工作中,我们强加了模型预测控制(MPC)产生的最佳状态输入轨迹满足机器人系统自适应控制中的Lyapunov函数标准。因此,我们将控制Lyapunov函数(CLF)提供的稳定性保证以及MPC在统一的自适应框架中提供的最优性,在机器人与未知对象的交互过程中产生改进的性能。我们验证了携带未建模有效载荷和拉重盒子的四足机器人的仿真和硬件测试中提出的方法。
translated by 谷歌翻译
机器人和与世界相互作用或互动的机器人和智能系统越来越多地被用来自动化各种任务。这些系统完成这些任务的能力取决于构成机器人物理及其传感器物体的机械和电气部件,例如,感知算法感知环境,并计划和控制算法以生产和控制算法来生产和控制算法有意义的行动。因此,通常有必要在设计具体系统时考虑这些组件之间的相互作用。本文探讨了以端到端方式对机器人系统进行任务驱动的合作的工作,同时使用推理或控制算法直接优化了系统的物理组件以进行任务性能。我们首先考虑直接优化基于信标的本地化系统以达到本地化准确性的问题。设计这样的系统涉及将信标放置在整个环境中,并通过传感器读数推断位置。在我们的工作中,我们开发了一种深度学习方法,以直接优化信标的放置和位置推断以达到本地化精度。然后,我们将注意力转移到了由任务驱动的机器人及其控制器优化的相关问题上。在我们的工作中,我们首先提出基于多任务增强学习的数据有效算法。我们的方法通过利用能够在物理设计的空间上概括设计条件的控制器,有效地直接优化了物理设计和控制参数,以直接优化任务性能。然后,我们对此进行跟进,以允许对离散形态参数(例如四肢的数字和配置)进行优化。最后,我们通过探索优化的软机器人的制造和部署来得出结论。
translated by 谷歌翻译
在本文中,我们分析了具有基于视觉导航的无人机(UAV)的时间延迟动力学对控制器设计的影响。时间延迟是网络物理系统中不可避免的现象,并且对无人机的控制器设计和轨迹产生具有重要意义。时间延迟对无人机动态的影响随着基于视力较慢的导航堆栈的使用而增加。我们表明,文献中的现有模型不包括时间延迟,不适合控制器调整,因为一个微不足道的解决方案始终存在错误的解决方案。我们确定的微不足道的解决方案表明,使用无限控制器的利益来实现最佳性能,这与实际发现相矛盾。我们通过引入无人机的新型非线性时间延迟模型来避免这种缺点,然后获得与每个UAV控制回路相对应的一组线性解耦模型。分析了角度和高度动力学的线性时间延迟模型的成本函数,与无延迟模型相反,我们显示了有限的最佳控制器参数的存在。由于使用了时间延迟模型,我们在实验上表明,所提出的模型准确地表示系统稳定性限制。由于时间延迟的考虑,我们使用基于视觉探视的无人机(VO)导航,在跟踪峰值速度为2.09 m/s的lemsistate轨迹时,我们实现了RMSE 5.01 cm的跟踪结果,这与最新-艺术。
translated by 谷歌翻译
Force modulation of robotic manipulators has been extensively studied for several decades. However, it is not yet commonly used in safety-critical applications due to a lack of accurate interaction contact modeling and weak performance guarantees - a large proportion of them concerning the modulation of interaction forces. This study presents a high-level framework for simultaneous trajectory optimization and force control of the interaction between a manipulator and soft environments, which is prone to external disturbances. Sliding friction and normal contact force are taken into account. The dynamics of the soft contact model and the manipulator are simultaneously incorporated in a trajectory optimizer to generate desired motion and force profiles. A constrained optimization framework based on Alternative Direction Method of Multipliers (ADMM) has been employed to efficiently generate real-time optimal control inputs and high-dimensional state trajectories in a Model Predictive Control fashion. Experimental validation of the model performance is conducted on a soft substrate with known material properties using a Cartesian space force control mode. Results show a comparison of ground truth and real-time model-based contact force and motion tracking for multiple Cartesian motions in the valid range of the friction model. It is shown that a contact model-based motion planner can compensate for frictional forces and motion disturbances and improve the overall motion and force tracking accuracy. The proposed high-level planner has the potential to facilitate the automation of medical tasks involving the manipulation of compliant, delicate, and deformable tissues.
translated by 谷歌翻译