我们提出了一种基于审议的新型方法来端到端(E2E)口语理解(SLU),其中流媒体自动语音识别(ASR)模型会产生第一频繁的假设和第二通通的自然语言(NLU)(NLU) )组件通过对ASR的文本和音频嵌入来生成语义解析。通过将E2E SLU制定为广义解码器,我们的系统能够支持复杂的组成语义结构。此外,ASR和NLU之间的参数共享使该系统特别适合资源受限的(内部设备)环境;我们提出的方法始终在TOPV2数据集的口头版本(Stop)的口语版本上始终优于强大管道NLU基线的0.60%至0.65%。我们证明了文本和音频功能的融合,再加上系统重写第一通道假设的能力,使我们的方法对ASR错误更加强大。最后,我们表明我们的方法可以显着减少从自然语音到合成语音训练时的降解,但是要使文本到语音(TTS)成为可行的解决方案,以扩大E2E SLU。
translated by 谷歌翻译
端到端的口语理解(SLU)使用单个模型直接从音频中预测意图。它有望通过利用中间文本表示中丢失的声学信息来提高助手系统的性能,并防止自动语音识别(ASR)中的级联错误。此外,在部署助手系统时,拥有一个统一模型具有效率优势。但是,具有语义解析标签的公共音频数据集有限的数量阻碍了该领域的研究进展。在本文中,我们发布了以任务为导向的语义解析(Stop)数据集,该数据集是公开可用的最大,最复杂的SLU数据集。此外,我们定义了低资源拆分,以建立有限的标记数据时改善SLU的基准。此外,除了人类录制的音频外,我们还发布了TTS生成版本,以基于端到端SLU系统的低资源域适应性的性能。最初的实验表明,端到端SLU模型的性能比级联的同行差一些,我们希望这能鼓励未来的工作。
translated by 谷歌翻译
口语理解(SLU)系统提取文本成绩单和语义与意图和插槽相关的语言。 SLU系统通常由(1)自动语音识别(ASR)模块组成,(2)接口来自ASR相关输出的接口模块,以及(3)自然语言理解(NLU)模块。 SLU系统中的接口随附文本转录或更丰富的信息(例如从ASR到NLU)的信息。在本文中,我们研究界面如何影响与口语理解的联合培训。最值得注意的是,我们在公开可用的50小时SLURP数据集中获得了最新结果。我们首先利用通过文本界面连接的大型ASR和NLU模型,然后通过序列损耗函数共同训练这两个模型。对于未利用预位模型的场景,使用更丰富的神经界面通过联合序列损失训练获得了最佳结果。最后,我们显示了利用预期模型随培训数据规模增加的总体减少影响。
translated by 谷歌翻译
端到端(E2E)模型在口语理解(SLU)系统中变得越来越流行,并开始实现基于管道的方法的竞争性能。但是,最近的工作表明,这些模型努力以相同的意图概括为新的措辞,这表明模型无法理解给定话语的语义内容。在这项工作中,我们在E2E-SLU框架内的未标记文本数据中预先训练了在未标记的文本数据上进行预先训练的语言模型,以构建强大的语义表示。同时结合语义信息和声学信息可以增加推理时间,从而在语音助手等应用程序中部署时会导致高潜伏期。我们开发了一个2频道的SLU系统,该系统使用第一张音频的几秒钟的声学信息进行低潜伏期预测,并通过结合语义和声学表示在第二次通过中进行更高质量的预测。我们从先前的2次端到端语音识别系统上的工作中获得了灵感,该系统同时使用审议网络就可以在音频和第一通道假设上进行。所提出的2个通用SLU系统在Fluent Speech命令挑战集和SLURP数据集上优于基于声学的SLU模型,并减少了延迟,从而改善了用户体验。作为ESPNET-SLU工具包的一部分,我们的代码和模型公开可用。
translated by 谷歌翻译
近年来已经看到了最终(E2E)口语理解(SLU)系统的重要进展,它直接从口头音频预测意图和插槽。虽然对话历史被利用以改善基于传统的基于文本的自然语言理解系统,但是当前的E2E SLU方法尚未在多转义和面向任务的对话中尚未结合这种关键的上下文信号。在这项工作中,我们提出了一个上下文E2E SLU模型架构,它使用多针关注机制来通过编码的先前的话语和对话框(语音助手所采取的动作)进行多转对对话。我们详细介绍了将这些上下文集成到最先进的复制和转换器的模型中的替代方法。当应用于由语音助理收集的大型识别的话语数据集时,我们的方法分别将平均单词和语义误差率降低10.8%和12.6%。我们还在公开可用的数据集中呈现结果,并显示我们的方法显着提高了非联盟基线的性能
translated by 谷歌翻译
最近,语音界正在看到从基于深神经网络的混合模型移动到自动语音识别(ASR)的端到端(E2E)建模的显着趋势。虽然E2E模型在大多数基准测试中实现最先进的,但在ASR精度方面,混合模型仍然在当前的大部分商业ASR系统中使用。有很多实际的因素会影响生产模型部署决定。传统的混合模型,用于数十年的生产优化,通常擅长这些因素。在不为所有这些因素提供优异的解决方案,E2E模型很难被广泛商业化。在本文中,我们将概述最近的E2E模型的进步,专注于解决行业视角的挑战技术。
translated by 谷歌翻译
测量自动语音识别(ASR)系统质量对于创建用户满意的语音驱动应用程序至关重要。传统上,单词错误率(WER)用于评估ASR系统质量;但是,它有时与用户对转录质量的看法/判断息息相关。这是因为wer平等地称重每个单词,并且不考虑对用户感知产生更高影响的语义正确性。在这项工作中,我们提出评估ASR输出的质量,可以通过使用参考的语义向量与从预训练的语言模型中提取的假设之间的距离来测量语义正确性。我们对71K和36K用户注释的ASR输出质量的实验结果表明,与WER相比,Semdist与用户感知的相关性更高。我们还表明,与WER相比,Semdist与下游自然语言理解(NLU)任务具有更高的相关性。
translated by 谷歌翻译
口语理解(SLU)是大多数人机相互作用系统中的核心任务。随着智能家居,智能手机和智能扬声器的出现,SLU已成为该行业的关键技术。在经典的SLU方法中,自动语音识别(ASR)模块将语音信号转录为文本表示,自然语言理解(NLU)模块从中提取语义信息。最近,基于深神经网络的端到端SLU(E2E SLU)已经获得了动力,因为它受益于ASR和NLU部分的联合优化,因此限制了管道架构的误差效应的级联反应。但是,对于E2E模型用于预测语音输入的概念和意图的实际语言特性知之甚少。在本文中,我们提出了一项研究,以确定E2E模型执行SLU任务的信号特征和其他语言特性。该研究是在必须处理非英语(此处法语)语音命令的智能房屋的应用领域进行的。结果表明,良好的E2E SLU性能并不总是需要完美的ASR功能。此外,结果表明,与管道模型相比,E2E模型在处理背景噪声和句法变化方面具有出色的功能。最后,更细粒度的分析表明,E2E模型使用输入信号的音调信息来识别语音命令概念。本文概述的结果和方法提供了一个跳板,以进一步分析语音处理中的E2E模型。
translated by 谷歌翻译
流动自动语音识别(ASR)模型更为流行,适合基于语音的应用程序。但是,非流入模型在查看整个音频上下文时提供了更好的性能。为了利用语音搜索等流媒体应用程序中非流游模型的好处,它通常在第二通过重新评分模式下使用。使用蒸汽模型生成的候选假设是使用非流程模型重新评分的。在这项工作中,我们在独立和重新评分模式的Flipkart语音搜索任务上评估了基于注意力的端到端ASR模型。这些模型基于收听拼写(LAS)编码器编码器架构。我们基于LSTM,变压器和构象异构体进行不同的编码器变化。我们将这些模型的延迟要求与它们的性能进行比较。总体而言,我们表明,变压器模型提供了可接受的延迟要求。我们报告的相对改善约为16%,第二次通过LAS重新评分,延迟开销低于5ms。我们还强调了CNN前端使用变压器体系结构的重要性,以达到可比的单词错误率(WER)。此外,我们观察到,在第二次通过重新评分模式下,所有编码器都提供了相似的好处,而在独立文本生成模式下,性能差异很明显。
translated by 谷歌翻译
自我监督学习(SSL)在语音识别方面取得了巨大的成功,而有限的探索已尝试完成其他语音处理任务。由于语音信号包含多方面的信息,包括说话者身份,副语言学,口语内容等,学习所有语音任务的通用表示都具有挑战性。为了解决该问题,我们提出了一个新的预培训模型WAVLM,以解决全堆栈的下游语音任务。 Wavlm共同学习了蒙面的语音预测和预训练。通过这种方式,WAVLM不仅可以通过掩盖的语音预测来保持语音内容建模能力,而且还可以通过语音denoing来提高非ASR任务的潜力。此外,WAVLM还采用封闭式的变压器结构的封闭相对位置偏置,以更好地捕获输入语音的序列排序。我们还将培训数据集从60k小时扩展到94K小时。 WAVLM大型在精湛的基准上实现了最先进的性能,并在其代表性基准上为各种语音处理任务带来了重大改进。代码和预培训模型可在https://aka.ms/wavlm上找到。
translated by 谷歌翻译
上下文偏见是端到端自动语音识别(ASR)系统的一项重要且具有挑战性现有方法主要包括上下文lm偏置,并将偏置编码器添加到端到端的ASR模型中。在这项工作中,我们介绍了一种新颖的方法,通过在端到端ASR系统之上添加上下文拼写校正模型来实现上下文偏见。我们将上下文信息与共享上下文编码器合并到序列到序列拼写校正模型中。我们提出的模型包括两种不同的机制:自动回旋(AR)和非自动回旋(NAR)。我们提出过滤算法来处理大尺寸的上下文列表以及性能平衡机制,以控制模型的偏置程度。我们证明所提出的模型是一种普遍的偏见解决方案,它是对域的不敏感的,可以在不同的情况下采用。实验表明,所提出的方法在ASR系统上的相对单词错误率(WER)降低多达51%,并且优于传统偏见方法。与AR溶液相比,提出的NAR模型可将模型尺寸降低43.2%,并将推断加速2.1倍。
translated by 谷歌翻译
In this paper, we perform an exhaustive evaluation of different representations to address the intent classification problem in a Spoken Language Understanding (SLU) setup. We benchmark three types of systems to perform the SLU intent detection task: 1) text-based, 2) lattice-based, and a novel 3) multimodal approach. Our work provides a comprehensive analysis of what could be the achievable performance of different state-of-the-art SLU systems under different circumstances, e.g., automatically- vs. manually-generated transcripts. We evaluate the systems on the publicly available SLURP spoken language resource corpus. Our results indicate that using richer forms of Automatic Speech Recognition (ASR) outputs allows SLU systems to improve in comparison to the 1-best setup (4% relative improvement). However, crossmodal approaches, i.e., learning from acoustic and text embeddings, obtains performance similar to the oracle setup, and a relative improvement of 18% over the 1-best configuration. Thus, crossmodal architectures represent a good alternative to overcome the limitations of working purely automatically generated textual data.
translated by 谷歌翻译
在启用语音的应用程序中,一个预定的热词在同时用来激活设备以便进行查询。 toavoid重复一个热词,我们提出了一个端到端的流(E2E)打算查询检测器,该查询检测器识别向设备指向的发音,并滤除针对设备的其他发出内容。提出的方法将预期的查询检测器置于E2E模型中,该模型将语音识别的不同组件折叠成一个神经网络。E2E对台面解码和预期的查询检测进行建模,也使我们可以基于早期的部分偏置检测结果, ,这对于减少潜伏期和使系统响应很重要。我们证明,与独立的预期检测器相比,检测准确性和600个MSLATENCE的相对相对改善的相对提高一级误差率(EER)的相对提高了22%。在我们的实验中,提出的模型检测用户正在用用户开始讲话后,用8.7%的Eerwithin与设备进行对话。
translated by 谷歌翻译
在许多启用语音的人机交互情景中,用户语音可以与设备播放音频重叠。在这些实例中,诸如关键字斑点(KW)和设备定向语音检测(DDD)的任务的性能可能显着降低。为了解决这个问题,我们提出了一种隐含的声学回声消除(IAEC)框架,其中训练神经网络以利用参考麦克风信道的附加信息来学习忽略干扰信号并提高检测性能。我们分别研究了这个框架,分别为kWs和ddd的任务,一个增强版的谷歌语音命令v2和一个真实世界的alexa设备数据集。值得注意的是,在设备播放条件期间,我们显示DDD任务的假拒绝率为566 \%。我们还表现出与KWS任务的强大端到端神经回声消除+ KW基准的性能相当或卓越的性能,其数量级计算要求较少。
translated by 谷歌翻译
端到端(E2E)自动语音识别(ASR)系统通常难以识别出罕见的单词,这在训练数据中出现了很少。一种有希望的方法,提高了这种稀有词语的识别准确性,是在推理的推理中锁定在个性化/上下文信息上。在这项工作中,我们通过利用这种上下文信号,提出了一种新颖的上下文传感器传感器(CATT)网络,其通过利用这种上下文信号来改善基于最先进的变换器的ASR系统。具体地,我们提出了一种基于多主题的上下文偏置网络,其与ASR子网的其余部分共同训练。我们探讨了对编码上下文数据的不同技术,并创建最终注意上下文向量。我们还利用BLSTM和预借用的基于BERT的模型来编码上下文数据并指导网络培训。使用内部现场数据集,我们示出了使用基于BERT的上下文编码器的CATT,可提高基线变压器传感器的字错误率,并且分别优于现有的深层上下文模型24.2%和19.4%。
translated by 谷歌翻译
本文介绍了一个新型的流媒体自动语音识别(ASR)框架,用于由带有任意几何形状的遥远麦克风阵列捕获的多对话者重叠语音。我们的名为T-Sot-VA的框架在独立开发了两种最近的技术上。基于令牌级别的序列化输出训练(T-SOT),数量几何形状 - 反应连续的语音分离或VARARRARY和流媒体多对话者ASR。为了结合两种技术的最佳,我们新设计了一个基于T-SOT的ASR模型,该模型基于Vararray的两个分离的语音信号生成序列化的多对话者转录。我们还为这种ASR模型提出了一种预训练方案,我们基于单膜单键式ASR训练数据来模拟Vararray的输出信号。使用AMI会议语料库的对话转录实验表明,基于提议的框架的系统大大优于常规的框架。我们的系统分别在保留流媒体推理能力的同时,在多远离微米频道设置中分别实现了AMI开发和评估集的最新单词错误率为13.7%和15.5%。
translated by 谷歌翻译
口语理解(SLU)将自动语音识别(ASR)和自然语言理解(NLU)视为一项统一任务,通常遭受数据稀缺。我们基于元辅助学习来利用ASR和NLU联合培训方法,通过仅利用大量的语音数据来提高低资源SLU任务的性能。这种方法的一个明显优势是,它提供了一个灵活的框架来实施低资源的SLU训练任务,而无需访问任何进一步的语义注释。特别是,NLU模型被视为标签生成网络,以预测文本的意图和插槽标签。多任务网络网络从语音同步训练ASR任务和SLU任务;标签生成网络的预测作为语义目标传递到多任务网络。通过公共CATSLU数据集的实验证明了所提出的算法的效率,该数据集对下游NLU任务产生了更合适的ASR假设。
translated by 谷歌翻译
会话言论通常在话语水平上以松散的句法结构体现,但同时表现出连续话语的局部相干关系。事先工作已经表明,使用经常性神经网络或长短期存储器语言模型(LM)捕获较长的上下文信息可能遭受最近的偏置,而不是在远程上下文中。为了捕获词语和跨越话语之间的长期语义互动,我们提出了对话语音的自动语音识别(ASR)中语言建模的不同谈话历史融合方法。此外,引入了一种新的函数融合机制,该机制被引入熔断器并利用当前话语的声学嵌入和其相应的对话历史的语义含量以协作方式。为了塑造我们的想法,我们将ASR N-Best假设救援人员框架作为预测问题,利用BERT,一个标志性的预训练LM,作为成分车辆,以便于从给定的N最佳假设列表中选择Oracle假设。在AMI基准数据集上进行的实证实验似乎展示了我们对某些目前的线上的方法相关的可行性和功效。
translated by 谷歌翻译
使用未知数量的扬声器数量的单通道远场录制的自动语音识别(ASR)传统上由级联模块解决。最近的研究表明,与模块化系统相比,端到端(E2E)多扬声器ASR模型可以实现卓越的识别准确性。但是,这些模型不会确保由于其对完整音频上下文的依赖性而实时适用性。这项工作采用实时适用性,作为模型设计的第一优先级,并解决了以前的多扬声器经常性神经网络传感器(MS-RNN-T)的几个挑战。首先,我们在训练期间介绍一般的重叠言论模拟,在LibrisPeechMix测试集上产生14%的相对字错误率(WER)改进。其次,我们提出了一种新的多转RNN-T(MT-RNN-T)模型,其具有基于重叠的目标布置策略,其概括为任意数量的扬声器,而没有模型架构的变化。我们调查在Liblics测试集上培训训练期间看到的最大扬声器数量的影响,并在两位扬声器MS-RNN-T上报告28%的相对加速。第三,我们试验丰富的转录战略,共同承认和分割多方言论。通过深入分析,我们讨论所提出的系统的潜在陷阱以及未来的未来研究方向。
translated by 谷歌翻译
Automatic Speech Recognition (ASR) systems typically yield output in lexical form. However, humans prefer a written form output. To bridge this gap, ASR systems usually employ Inverse Text Normalization (ITN). In previous works, Weighted Finite State Transducers (WFST) have been employed to do ITN. WFSTs are nicely suited to this task but their size and run-time costs can make deployment on embedded applications challenging. In this paper, we describe the development of an on-device ITN system that is streaming, lightweight & accurate. At the core of our system is a streaming transformer tagger, that tags lexical tokens from ASR. The tag informs which ITN category might be applied, if at all. Following that, we apply an ITN-category-specific WFST, only on the tagged text, to reliably perform the ITN conversion. We show that the proposed ITN solution performs equivalent to strong baselines, while being significantly smaller in size and retaining customization capabilities.
translated by 谷歌翻译