在启用语音的应用程序中,一个预定的热词在同时用来激活设备以便进行查询。 toavoid重复一个热词,我们提出了一个端到端的流(E2E)打算查询检测器,该查询检测器识别向设备指向的发音,并滤除针对设备的其他发出内容。提出的方法将预期的查询检测器置于E2E模型中,该模型将语音识别的不同组件折叠成一个神经网络。E2E对台面解码和预期的查询检测进行建模,也使我们可以基于早期的部分偏置检测结果, ,这对于减少潜伏期和使系统响应很重要。我们证明,与独立的预期检测器相比,检测准确性和600个MSLATENCE的相对相对改善的相对提高一级误差率(EER)的相对提高了22%。在我们的实验中,提出的模型检测用户正在用用户开始讲话后,用8.7%的Eerwithin与设备进行对话。
translated by 谷歌翻译
尽管流媒体助手系统已在许多应用中使用,但该系统通常集中于不自然的单次交互,假设来自单个语音查询的输入毫不犹豫地或不足。但是,除了反弹之外,常见的对话说法通常涉及多个转弯的查询。这些疏远包括暂停思考,犹豫,延长单词,填补的停顿和重复的短语。这使得通过对话演讲进行语音识别,其中包括有多个查询,这是一项具有挑战性的任务。为了更好地建模对话互动,至关重要的是,歧视汇率和查询的结束至关重要,以使用户能够在用户完成时,同时使系统尽快做出响应,以使用户保持地板的折衷。在本文中,我们提出了一个基于端到端(E2E)语音识别器的转折预测指标。我们的最佳系统是通过共同优化ASR任务并检测用户何时停止思考或完成口语来获得的。所提出的方法显示,在预测真正的转弯率的97%以上的召回率和85%的精度率中,在设计集中仅100毫秒延迟,设计了4种类型的对话说法中插入4种散布。
translated by 谷歌翻译
设备的端到端(E2E)模型已显示出对质量和延迟的英语语音搜索任务的常规模型的改进。 E2E模型还显示了多语言自动语音识别(ASR)的有希望的结果。在本文中,我们将以前的容量解决方案扩展到流应用程序,并提出流媒体多语言E2E ASR系统,该系统在设备上完全运行,质量和延迟与单个单语言模型相当。为了实现这一目标,我们提出了一个编码器端量模型和一个终端(EOU)联合层,以提高质量和延迟权衡。我们的系统以语言不可知论的方式构建,允许它实时支持本条件的代码切换。为了解决大型模型的可行性问题,我们进行了设备分析,并用最近开发的嵌入解码器代替了耗时的LSTM解码器。通过这些更改,我们设法在不到实时的时间内在移动设备上运行了这样的系统。
translated by 谷歌翻译
在长时间到数小时的长时间话语中,提高端到端ASR模型的性能是语音识别的持续挑战。一个常见的解决方案是使用单独的语音活动检测器(VAD)事先将音频分割,该声音活动检测器(VAD)纯粹基于声音/非语音信息来决定段边界位置。但是,VAD细分器可能是现实世界语音的最佳选择,例如,一个完整的句子应该整体上可能包含犹豫(“设置... 5点钟的警报”) 。我们建议用端到端的ASR模型替换VAD,能够以流方式预测段边界,从而使细分决定不仅在更好的声学特征上,而且还可以在解码文本的语义特征上进行,并具有可忽略的额外功能计算。在现实世界长音频(YouTube)的实验中,长度长达30分钟,我们证明了相对改善的8.5%,并且与VAD段基线相比,中位段延迟潜伏期的中位数延迟延迟减少了250毫秒。 - ART构象体RNN-T模型。
translated by 谷歌翻译
口语理解(SLU)系统提取文本成绩单和语义与意图和插槽相关的语言。 SLU系统通常由(1)自动语音识别(ASR)模块组成,(2)接口来自ASR相关输出的接口模块,以及(3)自然语言理解(NLU)模块。 SLU系统中的接口随附文本转录或更丰富的信息(例如从ASR到NLU)的信息。在本文中,我们研究界面如何影响与口语理解的联合培训。最值得注意的是,我们在公开可用的50小时SLURP数据集中获得了最新结果。我们首先利用通过文本界面连接的大型ASR和NLU模型,然后通过序列损耗函数共同训练这两个模型。对于未利用预位模型的场景,使用更丰富的神经界面通过联合序列损失训练获得了最佳结果。最后,我们显示了利用预期模型随培训数据规模增加的总体减少影响。
translated by 谷歌翻译
We explore unifying a neural segmenter with two-pass cascaded encoder ASR into a single model. A key challenge is allowing the segmenter (which runs in real-time, synchronously with the decoder) to finalize the 2nd pass (which runs 900 ms behind real-time) without introducing user-perceived latency or deletion errors during inference. We propose a design where the neural segmenter is integrated with the causal 1st pass decoder to emit a end-of-segment (EOS) signal in real-time. The EOS signal is then used to finalize the non-causal 2nd pass. We experiment with different ways to finalize the 2nd pass, and find that a novel dummy frame injection strategy allows for simultaneous high quality 2nd pass results and low finalization latency. On a real-world long-form captioning task (YouTube), we achieve 2.4% relative WER and 140 ms EOS latency gains over a baseline VAD-based segmenter with the same cascaded encoder.
translated by 谷歌翻译
近年来已经看到了最终(E2E)口语理解(SLU)系统的重要进展,它直接从口头音频预测意图和插槽。虽然对话历史被利用以改善基于传统的基于文本的自然语言理解系统,但是当前的E2E SLU方法尚未在多转义和面向任务的对话中尚未结合这种关键的上下文信号。在这项工作中,我们提出了一个上下文E2E SLU模型架构,它使用多针关注机制来通过编码的先前的话语和对话框(语音助手所采取的动作)进行多转对对话。我们详细介绍了将这些上下文集成到最先进的复制和转换器的模型中的替代方法。当应用于由语音助理收集的大型识别的话语数据集时,我们的方法分别将平均单词和语义误差率降低10.8%和12.6%。我们还在公开可用的数据集中呈现结果,并显示我们的方法显着提高了非联盟基线的性能
translated by 谷歌翻译
语言识别对于自动语音识别(ASR)中的许多下游任务至关重要,并且有益于将多语言端到端的ASR集成为附加任务。在本文中,我们建议通过集成每帧语言标识符(LID)预测器来修改基于层压编码器的复发神经网络传感器(RNN-T)模型的结构。带有级联编码器的RNN-T可以使用不右键的第一通用解码来实现较低延迟的流动ASR,并使用二频道解码使用更长的右文本实现较低的单词错误率(WERS)。通过利用当前文章中的这种差异和统计池的流传输实现,该建议的方法可以实现准确的流盖预测,而几乎没有额外的测试时间成本。语音搜索数据集的实验结果具有9个语言语言位置,表明所提出的方法平均达到96.2%的盖子预测准确性,而与输入中的Oracle盖相同的二次通用方法。
translated by 谷歌翻译
近年来,在设备上的演讲识别(ASR)的个性化已经爆炸性增长,这在很大程度上是由于个人助理功能在移动设备和智能家居扬声器上越来越受欢迎。在这项工作中,我们提出了个人VAD 2.0,这是一种个性化的语音活动探测器,可检测目标扬声器的语音活动,作为流媒体上的ASR系统的一部分。尽管以前的概念证明研究已经验证了个人VAD的有效性,但在生产中可以使用该模型之前,仍然存在一些关键的挑战:首先,在招生和无人列的场景中,质量必须令人满意。其次,它应该以流媒体方式运行。最后,型号的大小应足够小,以适合有限的延迟和CPU/内存预算。为了满足多方面的要求,我们提出了一系列新颖的设计:1)高级扬声器嵌入调制方法; 2)一种新的培训范式,以概括为无数的条件; 3)用于延迟和资源限制的体系结构和运行时优化。对现实语音识别系统的广泛实验证明了我们提出的方法的最新性能。
translated by 谷歌翻译
最近,语音界正在看到从基于深神经网络的混合模型移动到自动语音识别(ASR)的端到端(E2E)建模的显着趋势。虽然E2E模型在大多数基准测试中实现最先进的,但在ASR精度方面,混合模型仍然在当前的大部分商业ASR系统中使用。有很多实际的因素会影响生产模型部署决定。传统的混合模型,用于数十年的生产优化,通常擅长这些因素。在不为所有这些因素提供优异的解决方案,E2E模型很难被广泛商业化。在本文中,我们将概述最近的E2E模型的进步,专注于解决行业视角的挑战技术。
translated by 谷歌翻译
端到端(E2E)模型在口语理解(SLU)系统中变得越来越流行,并开始实现基于管道的方法的竞争性能。但是,最近的工作表明,这些模型努力以相同的意图概括为新的措辞,这表明模型无法理解给定话语的语义内容。在这项工作中,我们在E2E-SLU框架内的未标记文本数据中预先训练了在未标记的文本数据上进行预先训练的语言模型,以构建强大的语义表示。同时结合语义信息和声学信息可以增加推理时间,从而在语音助手等应用程序中部署时会导致高潜伏期。我们开发了一个2频道的SLU系统,该系统使用第一张音频的几秒钟的声学信息进行低潜伏期预测,并通过结合语义和声学表示在第二次通过中进行更高质量的预测。我们从先前的2次端到端语音识别系统上的工作中获得了灵感,该系统同时使用审议网络就可以在音频和第一通道假设上进行。所提出的2个通用SLU系统在Fluent Speech命令挑战集和SLURP数据集上优于基于声学的SLU模型,并减少了延迟,从而改善了用户体验。作为ESPNET-SLU工具包的一部分,我们的代码和模型公开可用。
translated by 谷歌翻译
口语理解(SLU)是大多数人机相互作用系统中的核心任务。随着智能家居,智能手机和智能扬声器的出现,SLU已成为该行业的关键技术。在经典的SLU方法中,自动语音识别(ASR)模块将语音信号转录为文本表示,自然语言理解(NLU)模块从中提取语义信息。最近,基于深神经网络的端到端SLU(E2E SLU)已经获得了动力,因为它受益于ASR和NLU部分的联合优化,因此限制了管道架构的误差效应的级联反应。但是,对于E2E模型用于预测语音输入的概念和意图的实际语言特性知之甚少。在本文中,我们提出了一项研究,以确定E2E模型执行SLU任务的信号特征和其他语言特性。该研究是在必须处理非英语(此处法语)语音命令的智能房屋的应用领域进行的。结果表明,良好的E2E SLU性能并不总是需要完美的ASR功能。此外,结果表明,与管道模型相比,E2E模型在处理背景噪声和句法变化方面具有出色的功能。最后,更细粒度的分析表明,E2E模型使用输入信号的音调信息来识别语音命令概念。本文概述的结果和方法提供了一个跳板,以进一步分析语音处理中的E2E模型。
translated by 谷歌翻译
上下文偏见是端到端自动语音识别(ASR)系统的一项重要且具有挑战性现有方法主要包括上下文lm偏置,并将偏置编码器添加到端到端的ASR模型中。在这项工作中,我们介绍了一种新颖的方法,通过在端到端ASR系统之上添加上下文拼写校正模型来实现上下文偏见。我们将上下文信息与共享上下文编码器合并到序列到序列拼写校正模型中。我们提出的模型包括两种不同的机制:自动回旋(AR)和非自动回旋(NAR)。我们提出过滤算法来处理大尺寸的上下文列表以及性能平衡机制,以控制模型的偏置程度。我们证明所提出的模型是一种普遍的偏见解决方案,它是对域的不敏感的,可以在不同的情况下采用。实验表明,所提出的方法在ASR系统上的相对单词错误率(WER)降低多达51%,并且优于传统偏见方法。与AR溶液相比,提出的NAR模型可将模型尺寸降低43.2%,并将推断加速2.1倍。
translated by 谷歌翻译
In this paper, we perform an exhaustive evaluation of different representations to address the intent classification problem in a Spoken Language Understanding (SLU) setup. We benchmark three types of systems to perform the SLU intent detection task: 1) text-based, 2) lattice-based, and a novel 3) multimodal approach. Our work provides a comprehensive analysis of what could be the achievable performance of different state-of-the-art SLU systems under different circumstances, e.g., automatically- vs. manually-generated transcripts. We evaluate the systems on the publicly available SLURP spoken language resource corpus. Our results indicate that using richer forms of Automatic Speech Recognition (ASR) outputs allows SLU systems to improve in comparison to the 1-best setup (4% relative improvement). However, crossmodal approaches, i.e., learning from acoustic and text embeddings, obtains performance similar to the oracle setup, and a relative improvement of 18% over the 1-best configuration. Thus, crossmodal architectures represent a good alternative to overcome the limitations of working purely automatically generated textual data.
translated by 谷歌翻译
我们提出了一种基于审议的新型方法来端到端(E2E)口语理解(SLU),其中流媒体自动语音识别(ASR)模型会产生第一频繁的假设和第二通通的自然语言(NLU)(NLU) )组件通过对ASR的文本和音频嵌入来生成语义解析。通过将E2E SLU制定为广义解码器,我们的系统能够支持复杂的组成语义结构。此外,ASR和NLU之间的参数共享使该系统特别适合资源受限的(内部设备)环境;我们提出的方法始终在TOPV2数据集的口头版本(Stop)的口语版本上始终优于强大管道NLU基线的0.60%至0.65%。我们证明了文本和音频功能的融合,再加上系统重写第一通道假设的能力,使我们的方法对ASR错误更加强大。最后,我们表明我们的方法可以显着减少从自然语音到合成语音训练时的降解,但是要使文本到语音(TTS)成为可行的解决方案,以扩大E2E SLU。
translated by 谷歌翻译
使用未知数量的扬声器数量的单通道远场录制的自动语音识别(ASR)传统上由级联模块解决。最近的研究表明,与模块化系统相比,端到端(E2E)多扬声器ASR模型可以实现卓越的识别准确性。但是,这些模型不会确保由于其对完整音频上下文的依赖性而实时适用性。这项工作采用实时适用性,作为模型设计的第一优先级,并解决了以前的多扬声器经常性神经网络传感器(MS-RNN-T)的几个挑战。首先,我们在训练期间介绍一般的重叠言论模拟,在LibrisPeechMix测试集上产生14%的相对字错误率(WER)改进。其次,我们提出了一种新的多转RNN-T(MT-RNN-T)模型,其具有基于重叠的目标布置策略,其概括为任意数量的扬声器,而没有模型架构的变化。我们调查在Liblics测试集上培训训练期间看到的最大扬声器数量的影响,并在两位扬声器MS-RNN-T上报告28%的相对加速。第三,我们试验丰富的转录战略,共同承认和分割多方言论。通过深入分析,我们讨论所提出的系统的潜在陷阱以及未来的未来研究方向。
translated by 谷歌翻译
梁搜索是端到端模型的主要ASR解码算法,生成树结构化假设。但是,最近的研究表明,通过假设合并进行解码可以通过可比或更好的性能实现更有效的搜索。但是,复发网络中的完整上下文与假设合并不兼容。我们建议在RNN传感器的预测网络中使用矢量定量的长期记忆单元(VQ-LSTM)。通过与ASR网络共同培训离散表示形式,可以积极合并假设以生成晶格。我们在总机语料库上进行的实验表明,提出的VQ RNN传感器改善了具有常规预测网络的换能器的ASR性能,同时还产生了具有相同光束尺寸的Oracle Word错误率(WER)的密集晶格。其他语言模型撤退实验还证明了拟议的晶格生成方案的有效性。
translated by 谷歌翻译
已知历史和未来的上下文信息对于准确的声学建模很重要。但是,获取未来的上下文会带来流式ASR的延迟。在本文中,我们提出了一个新的框架 - 块,模拟未来的上下文和解码(Cuside)以进行流语言识别。引入了一个新的仿真模块,以递归地模拟未来的上下文帧,而无需等待未来的上下文。使用自我监督的损失与ASR模型共同训练模拟模块;ASR模型通过通常的ASR损失(例如我们实验中使用的CTC-CRF)进行了优化。实验表明,与使用真实的未来框架作为正确的上下文相比,使用模拟的未来上下文可以大大降低延迟,同时保持识别精度。使用Cuside,我们在Aishell-1数据集上获得了新的最新流媒体ASR结果。
translated by 谷歌翻译
This paper proposes a modification to RNN-Transducer (RNN-T) models for automatic speech recognition (ASR). In standard RNN-T, the emission of a blank symbol consumes exactly one input frame; in our proposed method, we introduce additional blank symbols, which consume two or more input frames when emitted. We refer to the added symbols as big blanks, and the method multi-blank RNN-T. For training multi-blank RNN-Ts, we propose a novel logit under-normalization method in order to prioritize emissions of big blanks. With experiments on multiple languages and datasets, we show that multi-blank RNN-T methods could bring relative speedups of over +90%/+139% to model inference for English Librispeech and German Multilingual Librispeech datasets, respectively. The multi-blank RNN-T method also improves ASR accuracy consistently. We will release our implementation of the method in the NeMo (\url{https://github.com/NVIDIA/NeMo}) toolkit.
translated by 谷歌翻译
流动自动语音识别(ASR)模型更为流行,适合基于语音的应用程序。但是,非流入模型在查看整个音频上下文时提供了更好的性能。为了利用语音搜索等流媒体应用程序中非流游模型的好处,它通常在第二通过重新评分模式下使用。使用蒸汽模型生成的候选假设是使用非流程模型重新评分的。在这项工作中,我们在独立和重新评分模式的Flipkart语音搜索任务上评估了基于注意力的端到端ASR模型。这些模型基于收听拼写(LAS)编码器编码器架构。我们基于LSTM,变压器和构象异构体进行不同的编码器变化。我们将这些模型的延迟要求与它们的性能进行比较。总体而言,我们表明,变压器模型提供了可接受的延迟要求。我们报告的相对改善约为16%,第二次通过LAS重新评分,延迟开销低于5ms。我们还强调了CNN前端使用变压器体系结构的重要性,以达到可比的单词错误率(WER)。此外,我们观察到,在第二次通过重新评分模式下,所有编码器都提供了相似的好处,而在独立文本生成模式下,性能差异很明显。
translated by 谷歌翻译