端到端的口语理解(SLU)使用单个模型直接从音频中预测意图。它有望通过利用中间文本表示中丢失的声学信息来提高助手系统的性能,并防止自动语音识别(ASR)中的级联错误。此外,在部署助手系统时,拥有一个统一模型具有效率优势。但是,具有语义解析标签的公共音频数据集有限的数量阻碍了该领域的研究进展。在本文中,我们发布了以任务为导向的语义解析(Stop)数据集,该数据集是公开可用的最大,最复杂的SLU数据集。此外,我们定义了低资源拆分,以建立有限的标记数据时改善SLU的基准。此外,除了人类录制的音频外,我们还发布了TTS生成版本,以基于端到端SLU系统的低资源域适应性的性能。最初的实验表明,端到端SLU模型的性能比级联的同行差一些,我们希望这能鼓励未来的工作。
translated by 谷歌翻译
我们提出了一种基于审议的新型方法来端到端(E2E)口语理解(SLU),其中流媒体自动语音识别(ASR)模型会产生第一频繁的假设和第二通通的自然语言(NLU)(NLU) )组件通过对ASR的文本和音频嵌入来生成语义解析。通过将E2E SLU制定为广义解码器,我们的系统能够支持复杂的组成语义结构。此外,ASR和NLU之间的参数共享使该系统特别适合资源受限的(内部设备)环境;我们提出的方法始终在TOPV2数据集的口头版本(Stop)的口语版本上始终优于强大管道NLU基线的0.60%至0.65%。我们证明了文本和音频功能的融合,再加上系统重写第一通道假设的能力,使我们的方法对ASR错误更加强大。最后,我们表明我们的方法可以显着减少从自然语音到合成语音训练时的降解,但是要使文本到语音(TTS)成为可行的解决方案,以扩大E2E SLU。
translated by 谷歌翻译
Conventional conversation assistants extract text transcripts from the speech signal using automatic speech recognition (ASR) and then predict intent from the transcriptions. Using end-to-end spoken language understanding (SLU), the intents of the speaker are predicted directly from the speech signal without requiring intermediate text transcripts. As a result, the model can optimize directly for intent classification and avoid cascading errors from ASR. The end-to-end SLU system also helps in reducing the latency of the intent prediction model. Although many datasets are available publicly for text-to-intent tasks, the availability of labeled speech-to-intent datasets is limited, and there are no datasets available in the Indian accent. In this paper, we release the Skit-S2I dataset, the first publicly available Indian-accented SLU dataset in the banking domain in a conversational tonality. We experiment with multiple baselines, compare different pretrained speech encoder's representations, and find that SSL pretrained representations perform slightly better than ASR pretrained representations lacking prosodic features for speech-to-intent classification. The dataset and baseline code is available at \url{https://github.com/skit-ai/speech-to-intent-dataset}
translated by 谷歌翻译
自动语音识别和文本到语音系统主要以监督方式培训,需要高质量,准确标记的语音数据集。在这项工作中,我们研究语音数据的常见问题,并为语音数据集的构建和交互式错误分析引入工具箱。施工工具基于K \“urzinger等。工作,并且,尽我们所知,数据集探索工具是世界上第一个这类开源工具。我们演示了如何应用这些工具来创建一个俄语语音数据集并分析现有语音数据集(多语种LibrisPeech,Mozilla Common语音)。该工具是开放的,作为Nemo框架的一部分。
translated by 谷歌翻译
Collecting sufficient labeled data for spoken language understanding (SLU) is expensive and time-consuming. Recent studies achieved promising results by using pre-trained models in low-resource scenarios. Inspired by this, we aim to ask: which (if any) pre-training strategies can improve performance across SLU benchmarks? To answer this question, we employ four types of pre-trained models and their combinations for SLU. We leverage self-supervised speech and language models (LM) pre-trained on large quantities of unpaired data to extract strong speech and text representations. We also explore using supervised models pre-trained on larger external automatic speech recognition (ASR) or SLU corpora. We conduct extensive experiments on the SLU Evaluation (SLUE) benchmark and observe self-supervised pre-trained models to be more powerful, with pre-trained LM and speech models being most beneficial for the Sentiment Analysis and Named Entity Recognition task, respectively.
translated by 谷歌翻译
随着自动语音处理(ASR)系统越来越好,使用ASR输出越来越令于进行下游自然语言处理(NLP)任务。但是,很少的开源工具包可用于在不同口语理解(SLU)基准上生成可重复的结果。因此,需要建立一个开源标准,可以用于具有更快的开始进入SLU研究。我们展示了Espnet-SLU,它旨在在一个框架中快速发展口语语言理解。 Espnet-SLU是一个项目内部到结束语音处理工具包,ESPNET,它是一个广泛使用的开源标准,用于各种语音处理任务,如ASR,文本到语音(TTS)和语音转换(ST)。我们增强了工具包,为各种SLU基准提供实现,使研究人员能够无缝混合和匹配不同的ASR和NLU模型。我们还提供预磨损的模型,具有集中调谐的超参数,可以匹配或甚至优于最新的最先进的性能。该工具包在https://github.com/espnet/espnet上公开提供。
translated by 谷歌翻译
Most research on task oriented dialog modeling is based on written text input. However, users interact with practical dialog systems often using speech as input. Typically, systems convert speech into text using an Automatic Speech Recognition (ASR) system, introducing errors. Furthermore, these systems do not address the differences in written and spoken language. The research on this topic is stymied by the lack of a public corpus. Motivated by these considerations, our goal in hosting the speech-aware dialog state tracking challenge was to create a public corpus or task which can be used to investigate the performance gap between the written and spoken forms of input, develop models that could alleviate this gap, and establish whether Text-to-Speech-based (TTS) systems is a reasonable surrogate to the more-labor intensive human data collection. We created three spoken versions of the popular written-domain MultiWoz task -- (a) TTS-Verbatim: written user inputs were converted into speech waveforms using a TTS system, (b) Human-Verbatim: humans spoke the user inputs verbatim, and (c) Human-paraphrased: humans paraphrased the user inputs. Additionally, we provided different forms of ASR output to encourage wider participation from teams that may not have access to state-of-the-art ASR systems. These included ASR transcripts, word time stamps, and latent representations of the audio (audio encoder outputs). In this paper, we describe the corpus, report results from participating teams, provide preliminary analyses of their results, and summarize the current state-of-the-art in this domain.
translated by 谷歌翻译
AI研究中的基石是创建和采用标准化培训和测试数据集,以指定最新模型的进度。一个特别成功的例子是用于培训和评估英语自然语言理解(NLU)模型的胶水数据集。围绕基于BERT的语言模型的大量研究围绕着胶水中NLU任务的性能改进。为了评估其他语言的语言模型,创建了几个特定语言的胶水数据集。语音语言理解(SLU)的领域遵循了类似的轨迹。大型自我监督模型(例如WAV2VEC2)的成功实现了具有相对易于访问的未标记数据的语音模型。然后可以在SLU任务(例如出色的基准测试)上评估这些模型。在这项工作中,我们将其扩展到通过释放Indicsuperb基准测试来指示语言。具体来说,我们做出以下三项贡献。 (i)我们收集了Kathbath,其中包含来自印度203个地区的1,218个贡献者的12个印度语言的1,684小时的标记语音数据。 (ii)使用Kathbath,我们在6个语音任务中创建基准:自动语音识别,扬声器验证,说话者识别(单声道/多),语言识别,逐个示例查询以及对12种语言的关键字发现。 (iii)在发布的基准测试中,我们与常用的基线Fbank一起训练和评估不同的自我监督模型。我们表明,在大多数任务上,特定于语言的微调模型比基线更准确,包括对于语言识别任务的76 \%差距。但是,对于说话者识别,在大型数据集上训练的自我监督模型证明了一个优势。我们希望Indicsuperb有助于发展印度语言的语音语言理解模型的进步。
translated by 谷歌翻译
We study the capabilities of speech processing systems trained simply to predict large amounts of transcripts of audio on the internet. When scaled to 680,000 hours of multilingual and multitask supervision, the resulting models generalize well to standard benchmarks and are often competitive with prior fully supervised results but in a zero-shot transfer setting without the need for any fine-tuning. When compared to humans, the models approach their accuracy and robustness. We are releasing models and inference code to serve as a foundation for further work on robust speech processing.
translated by 谷歌翻译
由于少量转录的音频数据,为低资源语言开发自动语音识别(ASR)是一个挑战。对于许多这样的语言,音频和文本可单独使用,但没有带有抄录的音频。使用文本,可以通过文本到语音(TTS)系统综合生产语音。但是,许多低资源语言也没有质量的TTS系统。我们提出了一种替代方案:通过通过训练有素的TTS系统运行来自目标语言的文本来制作综合音频,用于高资源枢轴语言。我们研究了该技术在低资源环境中最有效的何时以及如何有效。在我们的实验中,使用数千种合成TTS文本语音对并复制真实数据来平衡可产生最佳结果。我们的发现表明,搜索一组候选枢轴语言可能会导致边际改进,令人惊讶的是,ASR性能可能会受到测量的TTS质量的提高而受到的伤害。这些发现的应用将ASR分别提高了64.5 \%和45.0 \%的字符误差率(CERR),分别对两种低资源语言:瓜兰\'i和suba。
translated by 谷歌翻译
In this paper, we perform an exhaustive evaluation of different representations to address the intent classification problem in a Spoken Language Understanding (SLU) setup. We benchmark three types of systems to perform the SLU intent detection task: 1) text-based, 2) lattice-based, and a novel 3) multimodal approach. Our work provides a comprehensive analysis of what could be the achievable performance of different state-of-the-art SLU systems under different circumstances, e.g., automatically- vs. manually-generated transcripts. We evaluate the systems on the publicly available SLURP spoken language resource corpus. Our results indicate that using richer forms of Automatic Speech Recognition (ASR) outputs allows SLU systems to improve in comparison to the 1-best setup (4% relative improvement). However, crossmodal approaches, i.e., learning from acoustic and text embeddings, obtains performance similar to the oracle setup, and a relative improvement of 18% over the 1-best configuration. Thus, crossmodal architectures represent a good alternative to overcome the limitations of working purely automatically generated textual data.
translated by 谷歌翻译
我们介绍了CVSS,这是一种大规模的多语言对语音转换(S2ST)语料库,从21种语言覆盖了21种语言的句子级并行S2ST对。通过将Covost 2从Covost 2的翻译文本综合将翻译文本与最先进的TTS系统合成语音,源自公共语音语音语料库和COVOST 2语音到文本转换(ST)语料库。提供了两个版本的翻译演讲:1)CVSS-C:所有翻译演讲都是一种高质量的规范声音; 2)CVSS-T:翻译语音从相应的源语音传输。此外,CVSS提供标准化的翻译文本,它与翻译语音中的发音匹配。在每个版本的CVSS上,我们建立了基线多语言直接S2ST模型和Cascade S2ST模型,验证了语料库的有效性。为了构建强大的Cascade S2ST基准,我们在Covost 2上培训了St模型,这优于前一种最先进的培训,而无需额外的数据。尽管如此,直接S2ST模型的性能在从头开始训练时接近强级联基线,并且在匹配ST模型中初始化时,仅在ASR转换转换时的0.1或0.7bleu差异。
translated by 谷歌翻译
通过共享数据集和基准,已经促进了语音处理的进展。历史上,这些都集中在自动语音识别(ASR),扬声器标识或其他较低级别的任务上。兴趣在更高层次的口语中越来越多,理解任务,包括使用端到端模型,但是此类任务的注释数据集较少。与此同时,最近的工作显示了预先培训通用表示的可能性,然后使用相对较少标记的数据进行微调的多个任务。我们建议为口语语言理解(屠宰)创建一套基准任务,由有限尺寸标记的培训集和相应的评估集组成。该资源将允许研究界跟踪进度,评估高级任务的预先接受预期的表示,并研究开放的问题,例如管道与端到端方法的实用性。我们介绍了雪橇基准套件的第一阶段,包括指定实体识别,情感分析和相应数据集上的ASR。我们专注于自然产生的(未读取或综合)语音和自由可用的数据集。我们为VoxceReb和Voxpopuli数据集的子集提供新的转录和注释,基线模型的评估指标和结果,以及重现基线的开源工具包,并评估新模型。
translated by 谷歌翻译
本文介绍了基于Wav2VEC 2.0的跨语言语音表示学习的大规模模型。我们在128种语言中培训最多2B个公共讲话音频的近半小时的型号的模型,比公共数据的数量级比最大的已知事先工作。我们的评估涵盖了广泛的任务,域,数据制度和语言,都是高低资源。在Covost-2语音翻译基准测试中,我们将先前的最先进的状态平均为7.4 BLEU超过21个翻译方向进入英语。对于语音识别,XLS-R在Babel,MLS,CommonVoice以及Voxpopuli上的最佳已知工作中提高,降低了相对的误差率14-34%。 XLS-R还在Voxlingua107语言识别上设置了新的技术状态。此外,我们表明,具有足够的模型规模,交叉思维预先预测可以在将英语演讲翻译成其他语言时才能优于英语撇印,这是一个有利于单晶的预借预制的设置。我们希望XLS-R可以帮助改善世界上更多语言的语音处理任务。
translated by 谷歌翻译
我们介绍了用于插槽,意图分类和虚拟助手评估的大规模数据集 - 数字亚马逊SLU资源包(SLURP)。大规模包含1M现实,平行,标记为虚拟助手的话语,涵盖51种语言,18个域,60个意图和55个插槽。通过任务专业翻译人员将仅英文slurp数据集定位为29属的50种类型多样性的语言来创建大规模。我们还介绍了XLM-R和MT5上的建模结果,包括精确的匹配精度,意图分类精度和插槽填充F1分数。我们已经公开发布了数据集,建模代码和模型。
translated by 谷歌翻译
最近的言语和语言技术的方法预先rain非常大型模型,用于特定任务。然而,这种大型模型的好处通常仅限于世界上少数资源丰富的语言。在这项工作中,我们对来自印度次大陆的低资源语言构建ASR系统进行多种贡献。首先,我们从各种领域策划40个印度语言的17,000小时的原始语音数据,包括教育,新闻,技术和金融。其次,使用这种原始语音数据,我们预先存在于40个印度语言的Wav2Vec样式模型的多个变体。第三,我们分析佩带的模型以查找关键特点:码本矢量的类似探测音素在语言中共享,跨层的表示是语言系列的判别,并且注意力头通常会在小型本地窗口中注意。第四,我们微调了9种语言的下游ASR模型,并在3个公共数据集上获得最先进的结果,包括非常低的资源语言,如Sinhala和Nepali。我们的工作建立了多语言预介质是建立ASR系统的有效策略,为印度次大陆的语言上不同的扬声器建立ASR系统。
translated by 谷歌翻译
Modern speech recognition systems exhibits rapid performance degradation under domain shift. This issue is especially prevalent in data-scarce settings, such as low-resource languages, where diversity of training data is limited. In this work we propose M2DS2, a simple and sample-efficient finetuning strategy for large pretrained speech models, based on mixed source and target domain self-supervision. We find that including source domain self-supervision stabilizes training and avoids mode collapse of the latent representations. For evaluation, we collect HParl, a $120$ hour speech corpus for Greek, consisting of plenary sessions in the Greek Parliament. We merge HParl with two popular Greek corpora to create GREC-MD, a test-bed for multi-domain evaluation of Greek ASR systems. In our experiments we find that, while other Unsupervised Domain Adaptation baselines fail in this resource-constrained environment, M2DS2 yields significant improvements for cross-domain adaptation, even when a only a few hours of in-domain audio are available. When we relax the problem in a weakly supervised setting, we find that independent adaptation for audio using M2DS2 and language using simple LM augmentation techniques is particularly effective, yielding word error rates comparable to the fully supervised baselines.
translated by 谷歌翻译
口语理解(SLU)将自动语音识别(ASR)和自然语言理解(NLU)视为一项统一任务,通常遭受数据稀缺。我们基于元辅助学习来利用ASR和NLU联合培训方法,通过仅利用大量的语音数据来提高低资源SLU任务的性能。这种方法的一个明显优势是,它提供了一个灵活的框架来实施低资源的SLU训练任务,而无需访问任何进一步的语义注释。特别是,NLU模型被视为标签生成网络,以预测文本的意图和插槽标签。多任务网络网络从语音同步训练ASR任务和SLU任务;标签生成网络的预测作为语义目标传递到多任务网络。通过公共CATSLU数据集的实验证明了所提出的算法的效率,该数据集对下游NLU任务产生了更合适的ASR假设。
translated by 谷歌翻译
Spoken language understanding (SLU) tasks have been studied for many decades in the speech research community, but have not received as much attention as lower-level tasks like speech and speaker recognition. In particular, there are not nearly as many SLU task benchmarks, and many of the existing ones use data that is not freely available to all researchers. Recent work has begun to introduce such benchmark datasets for several tasks. In this work, we introduce several new annotated SLU benchmark tasks based on freely available speech data, which complement existing benchmarks and address gaps in the SLU evaluation landscape. We contribute four tasks: question answering and summarization involve inference over longer speech sequences; named entity localization addresses the speech-specific task of locating the targeted content in the signal; dialog act classification identifies the function of a given speech utterance. We follow the blueprint of the Spoken Language Understanding Evaluation (SLUE) benchmark suite. In order to facilitate the development of SLU models that leverage the success of pre-trained speech representations, we will be publishing for each task (i) annotations for a relatively small fine-tuning set, (ii) annotated development and test sets, and (iii) baseline models for easy reproducibility and comparisons. In this work, we present the details of data collection and annotation and the performance of the baseline models. We also perform sensitivity analysis of pipeline models' performance (speech recognizer + text model) to the speech recognition accuracy, using more than 20 state-of-the-art speech recognition models.
translated by 谷歌翻译
已经证明了深度学习技术在各种任务中有效,特别是在语音识别系统的发展中,即旨在以一系列写词中的音频句子转录音频句子的系统。尽管该地区进展,但语音识别仍然可以被认为是困难的,特别是对于缺乏可用数据的语言,例如巴西葡萄牙语(BP)。从这个意义上讲,这项工作介绍了仅使用打开可用的音频数据的公共自动语音识别(ASR)系统的开发,从Wav2Vec 2.0 XLSR-53模型的微调,在许多语言中,通过BP数据进行了多种。最终模型在7个不同的数据集中呈现12.4%的平均误差率(在应用语言模型时10.5%)。根据我们的知识,这是开放ASR系统中BP的最佳结果。
translated by 谷歌翻译