由于少量转录的音频数据,为低资源语言开发自动语音识别(ASR)是一个挑战。对于许多这样的语言,音频和文本可单独使用,但没有带有抄录的音频。使用文本,可以通过文本到语音(TTS)系统综合生产语音。但是,许多低资源语言也没有质量的TTS系统。我们提出了一种替代方案:通过通过训练有素的TTS系统运行来自目标语言的文本来制作综合音频,用于高资源枢轴语言。我们研究了该技术在低资源环境中最有效的何时以及如何有效。在我们的实验中,使用数千种合成TTS文本语音对并复制真实数据来平衡可产生最佳结果。我们的发现表明,搜索一组候选枢轴语言可能会导致边际改进,令人惊讶的是,ASR性能可能会受到测量的TTS质量的提高而受到的伤害。这些发现的应用将ASR分别提高了64.5 \%和45.0 \%的字符误差率(CERR),分别对两种低资源语言:瓜兰\'i和suba。
translated by 谷歌翻译
开发语音技术是对低资源语言的挑战,其中注释和原始语音数据稀疏。马耳他是一种这样的语言。近年来,对马耳他的计算处理有所增加,包括语音技术,但后者的资源仍然稀疏。在本文中,我们考虑提高这些语言的语音识别的数据增强技术,专注于马耳他作为测试用例。我们考虑三种不同类型的数据增强:无监督的培训,多语言培训和合成演讲的使用作为培训数据。目标是确定这些技术或它们的组合,是改善起始点是大约7小时转录语音的语言的语言的最有效。我们的结果表明,在这里研究了三种数据增强技术,导致我们在不使用语言模型的情况下实现15%的绝对增长。
translated by 谷歌翻译
已经提出了语音转换(VC)以通过使用它来增强有限培训数据来改进低资源语言的语音识别系统。但直到最近,计算速度等实际问题限制了VC为此目的的使用。此外,尚不清楚在一个资源良好的语言上培训的VC模型是否可以从其他低资源语言应用于数据增强的目的。在这项工作中,我们评估VC系统是否可以在凌乱上使用,以改善低资源语音识别。具体地,我们将最近的几种技术与英语一起设计和培训实用的VC系统,然后使用该系统以几种低资源语言培训语音识别模型的数据。我们发现,当使用合理量的增强数据时,所有四种低资源语言都有改进了语音识别性能。
translated by 谷歌翻译
在非洲使用的2,000多种语言几乎都没有广泛可用的自动语音识别系统,并且所需的数据也仅适用于几种语言。我们已经尝试了两种技术,这些技术可能为非洲语言提供大型词汇识别的途径:多语言建模和自我监督学习。我们收集了可用的开源数据并收集了15种语言的数据,并使用这些技术训练了实验模型。我们的结果表明,汇总多语言端到端模型中可用的少量数据,并预先培训无监督的数据可以帮助提高许多非洲语言的语音识别质量。
translated by 谷歌翻译
如果有足够的高质量数据和计算资源,现代语音合成技术可以产生自然的语音。但是,许多语言不容易获得此类数据。本文着重于低资源的非洲语言的语音综合,从语料库创建到共享和部署文本到语音(TTS)系统。我们首先为具有最低技术资源和主题专业知识的构建语音合成系统创建了一组通用说明。接下来,我们通过参与式方法从“发现”数据(现有记录)中创建新的数据集,并考虑可访问性,质量和广度。我们证明,即使在次优环境中记录下来,我们也可以开发出具有25分钟的语音的合成器,这些合成器即使在次优环境中记录下来。最后,我们发布了12种非洲语言的语音数据,代码和受过训练的声音,以支持研究人员和开发人员。
translated by 谷歌翻译
自动语音识别(ASR)是新服务的关键元素,可帮助用户与自动化系统进行交互。深度学习方法使得用单词错误率低于5%的英语ASR部署系统成为可能。但是,这些方法的使用仅适用于具有数百或数千小时音频及其相应转录的语言。为了使所谓的低资源语言加快可以改善其ASR系统性能的资源的可用性,正在研究基于现有的资源来创建新资源的方法。在本文中,我们描述了我们的数据增强方法,以改善低资源和凝集性语言的ASR模型的结果。我们使用Wav2letter ++模型进行了为Quechua开发ASR的实验。通过我们的基本模型方法,我们将WER降低了8.73%。由此产生的ASR模型获得了22.75%的WER,并接受了99小时的原始资源和99小时的合成数据的培训,并结合了文本增强和合成语音发电
translated by 谷歌翻译
最近的言语和语言技术的方法预先rain非常大型模型,用于特定任务。然而,这种大型模型的好处通常仅限于世界上少数资源丰富的语言。在这项工作中,我们对来自印度次大陆的低资源语言构建ASR系统进行多种贡献。首先,我们从各种领域策划40个印度语言的17,000小时的原始语音数据,包括教育,新闻,技术和金融。其次,使用这种原始语音数据,我们预先存在于40个印度语言的Wav2Vec样式模型的多个变体。第三,我们分析佩带的模型以查找关键特点:码本矢量的类似探测音素在语言中共享,跨层的表示是语言系列的判别,并且注意力头通常会在小型本地窗口中注意。第四,我们微调了9种语言的下游ASR模型,并在3个公共数据集上获得最先进的结果,包括非常低的资源语言,如Sinhala和Nepali。我们的工作建立了多语言预介质是建立ASR系统的有效策略,为印度次大陆的语言上不同的扬声器建立ASR系统。
translated by 谷歌翻译
端到端(E2E)模型已成为最新语音识别系统的默认选择。此类型号经过大量标记数据的培训,这些数据通常无法用于低资源语言。诸如自我监督学习和转移学习的诺言之类的技术尚未在培训准确的模型中有效。另一方面,在各种域和扬声器集合上收集标记的数据集非常昂贵。在这项工作中,我们通过公共资料中的印度语言,特别是来自印度广播电台的公共档案馆的印度语言的``采矿''文本和音频对展示了这些方法的廉价和有效替代方案。作为关键组件,我们将Needleman-Wunsch算法调整为与相应的音频片段对齐句子,并给定长音频和其转录本的PDF,同时由于OCR,无关紧要的文本和未转录的语音而对错误进行了强大的态度。因此,我们创建了Shrutilipi,这是一个数据集,其中包含超过6,400个小时的12个印度语言标签的音频,总计为495万个句子。平均而言,Shrutilipi导致2.3倍增加了公开可用的标签数据。我们在12种语言中与21种人类评估者建立了Shrutilipi的质量。我们还根据代表区域,说话者和提到的实体建立了Shrutilipi的多样性。值得注意的是,我们表明,将Shrutilipi添加到WAV2VEC模型的训练集中,导致在Indicsuperb基准上的7种语言中,平均降低了5.8 \%。对于具有最多基准的印地语(7),平均水平从18.8%下降到13.5%。这种改进扩展到有效的模型:对于构象异构体模型(比WAV2VEC小10倍),我们显示出2.3%的下降。最后,我们通过证明对其进行训练的模型对嘈杂的输入更强大,证明了Shrutilipi的多样性。
translated by 谷歌翻译
我们探索跨语性多演讲者语音综合,并将跨语性语音转换应用于自动语音识别(ASR)系统的数据增强。通过广泛的实验,我们表明我们的方法允许语音合成和语音转换的应用,以在模型培训期间仅使用一个目标语言使用者在目标语言上改善ASR系统。与使用许多讲话者的其他作品相比,我们设法缩小了经过合成的与人类语音训练的ASR模型之间的差距。最后,我们表明,只使用目标语言的单个真实扬声器,可以通过我们的数据增强方法获得有希望的ASR培训结果。
translated by 谷歌翻译
自动语音识别和文本到语音系统主要以监督方式培训,需要高质量,准确标记的语音数据集。在这项工作中,我们研究语音数据的常见问题,并为语音数据集的构建和交互式错误分析引入工具箱。施工工具基于K \“urzinger等。工作,并且,尽我们所知,数据集探索工具是世界上第一个这类开源工具。我们演示了如何应用这些工具来创建一个俄语语音数据集并分析现有语音数据集(多语种LibrisPeech,Mozilla Common语音)。该工具是开放的,作为Nemo框架的一部分。
translated by 谷歌翻译
我们提出Vakyansh,这是一种用指示语言识别语音识别的端到端工具包。印度拥有近121种语言和大约125亿扬声器。然而,大多数语言在数据和预验证的模型方面都是低资源。通过Vakyansh,我们介绍了自动数据管道,用于数据创建,模型培训,模型评估和部署。我们以23个指示语言和Train Wav2Vec 2.0预验证的模型创建14,000小时的语音数据。然后,对这些预审预告措施的模型进行了修订,以创建18个指示语言的最先进的语音识别模型,其次是语言模型和标点符号修复模型。我们以使命开源所有这些资源,这将激发语音社区使用ASR模型以指示语言开发语音的首次应用程序。
translated by 谷歌翻译
低资源语言的自动语音识别(ASR)改善了语言少数群体的访问,以便人工智能(AI)提供的技术优势。在本文中,我们通过创建一个新的粤语数据集来解决香港广东语言的数据稀缺问题。我们的数据集多域粤语语料库(MDCC)由73.6小时的清洁阅读语音与成绩单配对,从香港的粤语有声读物收集。它结合了哲学,政治,教育,文化,生活方式和家庭领域,涵盖了广泛的主题。我们还查看所有现有的粤语数据集,并在两个最大的数据集(MDCC和公共语音ZH-HK)上执行实验。我们根据其语音类型,数据源,总大小和可用性分析现有数据集。使用Fairseq S2T变压器,最先进的ASR模型进行实验结果,显示了我们数据集的有效性。此外,我们通过在MDCC和常见的声音ZH-HK上应用多数据集学习来创建一个强大而强大的粤语ASR模型。
translated by 谷歌翻译
已经证明了深度学习技术在各种任务中有效,特别是在语音识别系统的发展中,即旨在以一系列写词中的音频句子转录音频句子的系统。尽管该地区进展,但语音识别仍然可以被认为是困难的,特别是对于缺乏可用数据的语言,例如巴西葡萄牙语(BP)。从这个意义上讲,这项工作介绍了仅使用打开可用的音频数据的公共自动语音识别(ASR)系统的开发,从Wav2Vec 2.0 XLSR-53模型的微调,在许多语言中,通过BP数据进行了多种。最终模型在7个不同的数据集中呈现12.4%的平均误差率(在应用语言模型时10.5%)。根据我们的知识,这是开放ASR系统中BP的最佳结果。
translated by 谷歌翻译
我们介绍了CVSS,这是一种大规模的多语言对语音转换(S2ST)语料库,从21种语言覆盖了21种语言的句子级并行S2ST对。通过将Covost 2从Covost 2的翻译文本综合将翻译文本与最先进的TTS系统合成语音,源自公共语音语音语料库和COVOST 2语音到文本转换(ST)语料库。提供了两个版本的翻译演讲:1)CVSS-C:所有翻译演讲都是一种高质量的规范声音; 2)CVSS-T:翻译语音从相应的源语音传输。此外,CVSS提供标准化的翻译文本,它与翻译语音中的发音匹配。在每个版本的CVSS上,我们建立了基线多语言直接S2ST模型和Cascade S2ST模型,验证了语料库的有效性。为了构建强大的Cascade S2ST基准,我们在Covost 2上培训了St模型,这优于前一种最先进的培训,而无需额外的数据。尽管如此,直接S2ST模型的性能在从头开始训练时接近强级联基线,并且在匹配ST模型中初始化时,仅在ASR转换转换时的0.1或0.7bleu差异。
translated by 谷歌翻译
We present SpeechMatrix, a large-scale multilingual corpus of speech-to-speech translations mined from real speech of European Parliament recordings. It contains speech alignments in 136 language pairs with a total of 418 thousand hours of speech. To evaluate the quality of this parallel speech, we train bilingual speech-to-speech translation models on mined data only and establish extensive baseline results on EuroParl-ST, VoxPopuli and FLEURS test sets. Enabled by the multilinguality of SpeechMatrix, we also explore multilingual speech-to-speech translation, a topic which was addressed by few other works. We also demonstrate that model pre-training and sparse scaling using Mixture-of-Experts bring large gains to translation performance. The mined data and models are freely available.
translated by 谷歌翻译
本文介绍了基于Wav2VEC 2.0的跨语言语音表示学习的大规模模型。我们在128种语言中培训最多2B个公共讲话音频的近半小时的型号的模型,比公共数据的数量级比最大的已知事先工作。我们的评估涵盖了广泛的任务,域,数据制度和语言,都是高低资源。在Covost-2语音翻译基准测试中,我们将先前的最先进的状态平均为7.4 BLEU超过21个翻译方向进入英语。对于语音识别,XLS-R在Babel,MLS,CommonVoice以及Voxpopuli上的最佳已知工作中提高,降低了相对的误差率14-34%。 XLS-R还在Voxlingua107语言识别上设置了新的技术状态。此外,我们表明,具有足够的模型规模,交叉思维预先预测可以在将英语演讲翻译成其他语言时才能优于英语撇印,这是一个有利于单晶的预借预制的设置。我们希望XLS-R可以帮助改善世界上更多语言的语音处理任务。
translated by 谷歌翻译
We study the capabilities of speech processing systems trained simply to predict large amounts of transcripts of audio on the internet. When scaled to 680,000 hours of multilingual and multitask supervision, the resulting models generalize well to standard benchmarks and are often competitive with prior fully supervised results but in a zero-shot transfer setting without the need for any fine-tuning. When compared to humans, the models approach their accuracy and robustness. We are releasing models and inference code to serve as a foundation for further work on robust speech processing.
translated by 谷歌翻译
许多自动语音识别(ASR)数据集包括一个单一的预定义测试集,该测试集由一个或多个演讲者组成,其语音从未出现在培训集中。但是,对于说话者数量很少的数据集,这种“持有说明器”的数据分配策略可能不是理想的选择。这项研究调查了具有最小ASR培训资源的五种语言的十种不同数据拆分方法。我们发现(1)模型性能取决于选择哪个扬声器进行测试; (2)所有固定扬声器的平均单词错误率(WER)不仅与多个随机拆分的平均差异相当,而且与任何给定的单个随机拆分相当; (3)当数据以启发性或对抗性分开时,通常也可以比较; (4)话语持续时间和强度是可变性的相对预测因素,而不管数据分解如何。这些结果表明,广泛使用的宣传者输出的ASR数据分配方法可以产生不反映未见数据或说话者模型性能的结果。在面对数据稀疏时,随机拆分可以产生更可靠和可推广的估计。
translated by 谷歌翻译
AI研究中的基石是创建和采用标准化培训和测试数据集,以指定最新模型的进度。一个特别成功的例子是用于培训和评估英语自然语言理解(NLU)模型的胶水数据集。围绕基于BERT的语言模型的大量研究围绕着胶水中NLU任务的性能改进。为了评估其他语言的语言模型,创建了几个特定语言的胶水数据集。语音语言理解(SLU)的领域遵循了类似的轨迹。大型自我监督模型(例如WAV2VEC2)的成功实现了具有相对易于访问的未标记数据的语音模型。然后可以在SLU任务(例如出色的基准测试)上评估这些模型。在这项工作中,我们将其扩展到通过释放Indicsuperb基准测试来指示语言。具体来说,我们做出以下三项贡献。 (i)我们收集了Kathbath,其中包含来自印度203个地区的1,218个贡献者的12个印度语言的1,684小时的标记语音数据。 (ii)使用Kathbath,我们在6个语音任务中创建基准:自动语音识别,扬声器验证,说话者识别(单声道/多),语言识别,逐个示例查询以及对12种语言的关键字发现。 (iii)在发布的基准测试中,我们与常用的基线Fbank一起训练和评估不同的自我监督模型。我们表明,在大多数任务上,特定于语言的微调模型比基线更准确,包括对于语言识别任务的76 \%差距。但是,对于说话者识别,在大型数据集上训练的自我监督模型证明了一个优势。我们希望Indicsuperb有助于发展印度语言的语音语言理解模型的进步。
translated by 谷歌翻译
在本文中,我们使用语言数据收集的现场方法讨论了四种低资源印度语语言的演讲语料库的过程中的工作 - Awadhi,Bhojpuri,Braj和Magahi。目前,语料库的总大小约为18小时(每种语言约4-5小时),并用语法信息进行转录和注释,例如词性标签,形态学特征和普遍的依赖关系。我们讨论了以这些语言收集数据的方法,其中大多数是在Covid-19大流行中心进行的,其中之一是为低收入群体带来一些额外的收入,说这些语言。在本文中,我们还讨论了这些语言中自动语音识别系统的基线实验的结果。
translated by 谷歌翻译