口语理解(SLU)将自动语音识别(ASR)和自然语言理解(NLU)视为一项统一任务,通常遭受数据稀缺。我们基于元辅助学习来利用ASR和NLU联合培训方法,通过仅利用大量的语音数据来提高低资源SLU任务的性能。这种方法的一个明显优势是,它提供了一个灵活的框架来实施低资源的SLU训练任务,而无需访问任何进一步的语义注释。特别是,NLU模型被视为标签生成网络,以预测文本的意图和插槽标签。多任务网络网络从语音同步训练ASR任务和SLU任务;标签生成网络的预测作为语义目标传递到多任务网络。通过公共CATSLU数据集的实验证明了所提出的算法的效率,该数据集对下游NLU任务产生了更合适的ASR假设。
translated by 谷歌翻译
口语理解(SLU)系统提取文本成绩单和语义与意图和插槽相关的语言。 SLU系统通常由(1)自动语音识别(ASR)模块组成,(2)接口来自ASR相关输出的接口模块,以及(3)自然语言理解(NLU)模块。 SLU系统中的接口随附文本转录或更丰富的信息(例如从ASR到NLU)的信息。在本文中,我们研究界面如何影响与口语理解的联合培训。最值得注意的是,我们在公开可用的50小时SLURP数据集中获得了最新结果。我们首先利用通过文本界面连接的大型ASR和NLU模型,然后通过序列损耗函数共同训练这两个模型。对于未利用预位模型的场景,使用更丰富的神经界面通过联合序列损失训练获得了最佳结果。最后,我们显示了利用预期模型随培训数据规模增加的总体减少影响。
translated by 谷歌翻译
随着自动语音处理(ASR)系统越来越好,使用ASR输出越来越令于进行下游自然语言处理(NLP)任务。但是,很少的开源工具包可用于在不同口语理解(SLU)基准上生成可重复的结果。因此,需要建立一个开源标准,可以用于具有更快的开始进入SLU研究。我们展示了Espnet-SLU,它旨在在一个框架中快速发展口语语言理解。 Espnet-SLU是一个项目内部到结束语音处理工具包,ESPNET,它是一个广泛使用的开源标准,用于各种语音处理任务,如ASR,文本到语音(TTS)和语音转换(ST)。我们增强了工具包,为各种SLU基准提供实现,使研究人员能够无缝混合和匹配不同的ASR和NLU模型。我们还提供预磨损的模型,具有集中调谐的超参数,可以匹配或甚至优于最新的最先进的性能。该工具包在https://github.com/espnet/espnet上公开提供。
translated by 谷歌翻译
In this paper, we perform an exhaustive evaluation of different representations to address the intent classification problem in a Spoken Language Understanding (SLU) setup. We benchmark three types of systems to perform the SLU intent detection task: 1) text-based, 2) lattice-based, and a novel 3) multimodal approach. Our work provides a comprehensive analysis of what could be the achievable performance of different state-of-the-art SLU systems under different circumstances, e.g., automatically- vs. manually-generated transcripts. We evaluate the systems on the publicly available SLURP spoken language resource corpus. Our results indicate that using richer forms of Automatic Speech Recognition (ASR) outputs allows SLU systems to improve in comparison to the 1-best setup (4% relative improvement). However, crossmodal approaches, i.e., learning from acoustic and text embeddings, obtains performance similar to the oracle setup, and a relative improvement of 18% over the 1-best configuration. Thus, crossmodal architectures represent a good alternative to overcome the limitations of working purely automatically generated textual data.
translated by 谷歌翻译
近年来已经看到了最终(E2E)口语理解(SLU)系统的重要进展,它直接从口头音频预测意图和插槽。虽然对话历史被利用以改善基于传统的基于文本的自然语言理解系统,但是当前的E2E SLU方法尚未在多转义和面向任务的对话中尚未结合这种关键的上下文信号。在这项工作中,我们提出了一个上下文E2E SLU模型架构,它使用多针关注机制来通过编码的先前的话语和对话框(语音助手所采取的动作)进行多转对对话。我们详细介绍了将这些上下文集成到最先进的复制和转换器的模型中的替代方法。当应用于由语音助理收集的大型识别的话语数据集时,我们的方法分别将平均单词和语义误差率降低10.8%和12.6%。我们还在公开可用的数据集中呈现结果,并显示我们的方法显着提高了非联盟基线的性能
translated by 谷歌翻译
口语理解(SLU)是大多数人机相互作用系统中的核心任务。随着智能家居,智能手机和智能扬声器的出现,SLU已成为该行业的关键技术。在经典的SLU方法中,自动语音识别(ASR)模块将语音信号转录为文本表示,自然语言理解(NLU)模块从中提取语义信息。最近,基于深神经网络的端到端SLU(E2E SLU)已经获得了动力,因为它受益于ASR和NLU部分的联合优化,因此限制了管道架构的误差效应的级联反应。但是,对于E2E模型用于预测语音输入的概念和意图的实际语言特性知之甚少。在本文中,我们提出了一项研究,以确定E2E模型执行SLU任务的信号特征和其他语言特性。该研究是在必须处理非英语(此处法语)语音命令的智能房屋的应用领域进行的。结果表明,良好的E2E SLU性能并不总是需要完美的ASR功能。此外,结果表明,与管道模型相比,E2E模型在处理背景噪声和句法变化方面具有出色的功能。最后,更细粒度的分析表明,E2E模型使用输入信号的音调信息来识别语音命令概念。本文概述的结果和方法提供了一个跳板,以进一步分析语音处理中的E2E模型。
translated by 谷歌翻译
Collecting sufficient labeled data for spoken language understanding (SLU) is expensive and time-consuming. Recent studies achieved promising results by using pre-trained models in low-resource scenarios. Inspired by this, we aim to ask: which (if any) pre-training strategies can improve performance across SLU benchmarks? To answer this question, we employ four types of pre-trained models and their combinations for SLU. We leverage self-supervised speech and language models (LM) pre-trained on large quantities of unpaired data to extract strong speech and text representations. We also explore using supervised models pre-trained on larger external automatic speech recognition (ASR) or SLU corpora. We conduct extensive experiments on the SLU Evaluation (SLUE) benchmark and observe self-supervised pre-trained models to be more powerful, with pre-trained LM and speech models being most beneficial for the Sentiment Analysis and Named Entity Recognition task, respectively.
translated by 谷歌翻译
语言理解(SLU)是以任务为导向对话系统的核心组成部分,期望面对人类用户不耐烦的推理较短。现有的工作通过为单转弯任务设计非自动回旋模型来提高推理速度,但在面对对话历史记录时未能适用于多转移SLU。直观的想法是使所有历史言语串联并直接利用非自动进取模型。但是,这种方法严重错过了显着的历史信息,并遭受了不协调的问题。为了克服这些缺点,我们提出了一个新型模型,用于使用层改造的变压器(SHA-LRT),该模型名为“显着历史”,该模型由SHA模块组成,该模块由SHA模块组成,一种层的机制(LRM)和插槽标签生成(SLG)任务。 SHA通过历史悠久的注意机制捕获了从历史言论和结果进行的当前对话的显着历史信息。 LRM预测了Transferer的中间状态的初步SLU结果,并利用它们来指导最终预测,SLG获得了非自动进取编码器的顺序依赖性信息。公共数据集上的实验表明,我们的模型可显着提高多转弯性能(总体上为17.5%),并且加速(接近15倍)最先进的基线的推理过程,并且在单转弯方面有效SLU任务。
translated by 谷歌翻译
最近,培训预培训方法在以任务为导向的对话框(TOD)系统中表现出了很大的成功。但是,大多数现有的预培训模型用于TOD专注于对话的理解或对话生成,但并非两者兼而有之。在本文中,我们提出了Space-3,这是一种新型的统一的半监督预培训的预训练的对话模型,从大规模对话CORPORA中学习有限的注释,可以有效地对广泛的下游对话任务进行微调。具体而言,Space-3由单个变压器中的四个连续组件组成,以维护TOD系统中的任务流:(i)对话框编码模块编码对话框历史记录,(ii)对话框理解模块以从任一用户中提取语义向量查询或系统响应,(iii)一个对话框策略模块,以生成包含响应高级语义的策略向量,以及(iv)对话框生成模块以产生适当的响应。我们为每个组件设计一个专门的预训练目标。具体而言,我们预先培训对话框编码模块,使用跨度掩码语言建模,以学习上下文化对话框信息。为了捕获“结构化对话框”语义,我们通过额外的对话注释通过新颖的树诱导的半监视对比度学习目标来预先培训对话框理解模块。此外,我们通过将其输出策略向量与响应响应的语义向量之间的L2距离最小化以进行策略优化,从而预先培训对话策略模块。最后,对话框生成模型由语言建模预先训练。结果表明,Space-3在八个下游对话框基准中实现最新性能,包括意图预测,对话框状态跟踪和端到端对话框建模。我们还表明,在低资源设置下,Space-3比现有模型具有更强的射击能力。
translated by 谷歌翻译
虽然现代自动语音识别(ASR)系统可以实现高性能,但它们可能会产生削弱读者体验并对下游任务造成伤害的错误。为了提高ASR假设的准确性和可靠性,我们提出了一种用于语音识别器的跨模型后处理系统,其中1)熔断来自不同方式的声学特征和文本特征,2)接合置信度估计器和多个误差校正器任务学习时尚和3)统一纠错和话语抑制模块。与单模或单任务模型相比,我们提出的系统被证明更有效和高效。实验结果表明,我们的后处理系统导致对工业ASR系统的单扬声器和多扬声器语音相对降低的10%相对减少,每个令牌约为1.7ms延迟确保在流语音识别中可以接受后处理引入的额外延迟。
translated by 谷歌翻译
端到端的口语理解(SLU)使用单个模型直接从音频中预测意图。它有望通过利用中间文本表示中丢失的声学信息来提高助手系统的性能,并防止自动语音识别(ASR)中的级联错误。此外,在部署助手系统时,拥有一个统一模型具有效率优势。但是,具有语义解析标签的公共音频数据集有限的数量阻碍了该领域的研究进展。在本文中,我们发布了以任务为导向的语义解析(Stop)数据集,该数据集是公开可用的最大,最复杂的SLU数据集。此外,我们定义了低资源拆分,以建立有限的标记数据时改善SLU的基准。此外,除了人类录制的音频外,我们还发布了TTS生成版本,以基于端到端SLU系统的低资源域适应性的性能。最初的实验表明,端到端SLU模型的性能比级联的同行差一些,我们希望这能鼓励未来的工作。
translated by 谷歌翻译
常规的自动语音识别系统不会产生标点符号,这对于语音识别结果的可读性很重要。随后的自然语言处理任务(例如机器翻译)也需要它们。标点符号预测模型上有许多作品将标点符号插入语音识别结果中作为后处理。但是,这些研究并未利用声学信息进行标点符号预测,并且直接受语音识别错误的影响。在这项研究中,我们提出了一个端到端模型,该模型将语音作为输入并输出标点的文本。在使用声学信息时,该模型有望在语音识别错误方面可靠地预测标点符号。我们还建议使用辅助损失,以使用中间层和未插入文本的输出来训练模型。通过实验,我们将提出的模型的性能与级联系统的性能进行比较。所提出的模型比级联系统获得更高的标点符号预测准确性,而无需牺牲语音识别错误率。还证明,使用中间输出针对未插入文本的多任务学习有效。此外,与级联系统相比,提出的模型仅具有约1/7的参数。
translated by 谷歌翻译
Spoken language understanding (SLU) tasks have been studied for many decades in the speech research community, but have not received as much attention as lower-level tasks like speech and speaker recognition. In particular, there are not nearly as many SLU task benchmarks, and many of the existing ones use data that is not freely available to all researchers. Recent work has begun to introduce such benchmark datasets for several tasks. In this work, we introduce several new annotated SLU benchmark tasks based on freely available speech data, which complement existing benchmarks and address gaps in the SLU evaluation landscape. We contribute four tasks: question answering and summarization involve inference over longer speech sequences; named entity localization addresses the speech-specific task of locating the targeted content in the signal; dialog act classification identifies the function of a given speech utterance. We follow the blueprint of the Spoken Language Understanding Evaluation (SLUE) benchmark suite. In order to facilitate the development of SLU models that leverage the success of pre-trained speech representations, we will be publishing for each task (i) annotations for a relatively small fine-tuning set, (ii) annotated development and test sets, and (iii) baseline models for easy reproducibility and comparisons. In this work, we present the details of data collection and annotation and the performance of the baseline models. We also perform sensitivity analysis of pipeline models' performance (speech recognizer + text model) to the speech recognition accuracy, using more than 20 state-of-the-art speech recognition models.
translated by 谷歌翻译
端到端(E2E)模型在口语理解(SLU)系统中变得越来越流行,并开始实现基于管道的方法的竞争性能。但是,最近的工作表明,这些模型努力以相同的意图概括为新的措辞,这表明模型无法理解给定话语的语义内容。在这项工作中,我们在E2E-SLU框架内的未标记文本数据中预先训练了在未标记的文本数据上进行预先训练的语言模型,以构建强大的语义表示。同时结合语义信息和声学信息可以增加推理时间,从而在语音助手等应用程序中部署时会导致高潜伏期。我们开发了一个2频道的SLU系统,该系统使用第一张音频的几秒钟的声学信息进行低潜伏期预测,并通过结合语义和声学表示在第二次通过中进行更高质量的预测。我们从先前的2次端到端语音识别系统上的工作中获得了灵感,该系统同时使用审议网络就可以在音频和第一通道假设上进行。所提出的2个通用SLU系统在Fluent Speech命令挑战集和SLURP数据集上优于基于声学的SLU模型,并减少了延迟,从而改善了用户体验。作为ESPNET-SLU工具包的一部分,我们的代码和模型公开可用。
translated by 谷歌翻译
自我监督的语音表示,如Wav2Vec 2.0和Hubert正在自动语音识别(ASR)中进行革命性进展。但是,未经监督模型没有完全证明在ASR以外的任务中产生更好的性能。在这项工作中,我们探索了Wav2Vec 2.0和Hubert预先训练模型的部分微调和整个微调,适用于三个非ASR语音任务:语音情感识别,发言者验证和口语理解。我们还比较带有/没有ASR微调的预训练型号。通过简单的下游框架,最佳分数对IEMocap上的语音情感识别的加权精度达到79.58%,扬声器验证对voxcereB1的2.36%,意图分类的准确性为87.51%,Slotp的槽填充的75.32%f1,因此为这三个基准设置新的最先进,证明了微调Wave2VEC 2.0和Hubert模型可以更好地学习韵律,语音印刷和语义表示。
translated by 谷歌翻译
当在现实世界中以任务为导向的对话系统中实现自然语言(NLG)组件时,不仅需要在训练数据上学习的自然话语,而且还需要适应对话环境(例如,环境中的噪音)听起来)和用户(例如,理解能力水平较低的用户)。受到语言生成任务的强化学习(RL)的最新进展的启发,我们提出了Antor,这是一种通过强化学习来适应以任务为导向对话的自然语言生成的方法。在Antor中,与用户对系统话语的理解相对应的自然语言理解(NLU)模块已纳入RL的目标函数中。如果将NLG的意图正确传达给了NLU,该意图理解了系统的话语,则NLG将获得积极的回报。我们在Multiwoz数据集上进行了实验,并确认Antor可以对语音识别错误和用户的不同词汇水平产生适应性话语。
translated by 谷歌翻译
Intent classification and slot filling are two core tasks in natural language understanding (NLU). The interaction nature of the two tasks makes the joint models often outperform the single designs. One of the promising solutions, called BERT (Bidirectional Encoder Representations from Transformers), achieves the joint optimization of the two tasks. BERT adopts the wordpiece to tokenize each input token into multiple sub-tokens, which causes a mismatch between the tokens and the labels lengths. Previous methods utilize the hidden states corresponding to the first sub-token as input to the classifier, which limits performance improvement since some hidden semantic informations is discarded in the fine-tune process. To address this issue, we propose a novel joint model based on BERT, which explicitly models the multiple sub-tokens features after wordpiece tokenization, thereby generating the context features that contribute to slot filling. Specifically, we encode the hidden states corresponding to multiple sub-tokens into a context vector via the attention mechanism. Then, we feed each context vector into the slot filling encoder, which preserves the integrity of the sentence. Experimental results demonstrate that our proposed model achieves significant improvement on intent classification accuracy, slot filling F1, and sentence-level semantic frame accuracy on two public benchmark datasets. The F1 score of the slot filling in particular has been improved from 96.1 to 98.2 (2.1% absolute) on the ATIS dataset.
translated by 谷歌翻译
Spoken language understanding (SLU) is a task aiming to extract high-level semantics from spoken utterances. Previous works have investigated the use of speech self-supervised models and textual pre-trained models, which have shown reasonable improvements to various SLU tasks. However, because of the mismatched modalities between speech signals and text tokens, previous methods usually need complex designs of the frameworks. This work proposes a simple yet efficient unsupervised paradigm that connects speech and textual pre-trained models, resulting in an unsupervised speech-to-semantic pre-trained model for various tasks in SLU. To be specific, we propose to use unsupervised automatic speech recognition (ASR) as a connector that bridges different modalities used in speech and textual pre-trained models. Our experiments show that unsupervised ASR itself can improve the representations from speech self-supervised models. More importantly, it is shown as an efficient connector between speech and textual pre-trained models, improving the performances of five different SLU tasks. Notably, on spoken question answering, we reach the state-of-the-art result over the challenging NMSQA benchmark.
translated by 谷歌翻译
有监督的基于深度学习的方法已应用于以任务为导向的对话框,并在有足够数量的培训示例可用时对有限的域和语言应用有效。在实践中,这些方法遭受了域驱动设计和资源不足的语言的缺点。域和语言模型应该随着问题空间的发展而增长和变化。一方面,对转移学习的研究证明了基于多语言变压器模型学习语义丰富的表示的跨语性能力。另一方面,除了上述方法之外,元学习还能够开发任务和语言学习算法,能够实现泛滥。在这种情况下,本文提出了使用典型的神经网络和基于多语言变压器的模型来研究使用协同进行几次学习的跨语性可传递性。自然语言的实验理解多亚提斯++语料库的任务表明,我们的方法基本上改善了低资源和高资源语言之间观察到的转移学习表现。更普遍地说,我们的方法证实,可以将具有特定语言的有意义的潜在空间推广到使用元学习的情况下看不见和资源不足的潜在空间。
translated by 谷歌翻译
在本文中,我们提出了一种三阶段培训方法,提高低资源语言的语音识别准确性。我们探索并提出了一种有效的技术组合,如传输学习,编码器冻结,使用文本到语音(TTS)和半监督学习(SSL)。为了提高低资源意大利ASR的准确性,我们可以分别利用训练有素的英语模型,未标记的文本语料库和未标记的音频语料库,分别分别使用传输学习,TTS增强和SSL。在第一阶段,我们使用从训练有素的英语模型的转移学习。这主要有助于学习来自资源丰富的语言的声学信息。该阶段通过基线减少约24%的相对字错误率(WER)。在第二阶段,我们通过TTS数据增强利用未标记的文本数据来将语言信息合并到模型中。我们还在此阶段探索冻结声学编码器。 TTS数据增强有助于我们进一步减少〜21%相对〜21%。最后,在第三阶段,我们通过使用来自未标记的音频数据的SSL来减少另一个4%的相对。总体而言,我们的双通话识别系统在第一次通过的单调散文注意力(Mocha)和第二次通过的全部关注,相对于基线,减少了〜42%的WER。
translated by 谷歌翻译