流动自动语音识别(ASR)模型更为流行,适合基于语音的应用程序。但是,非流入模型在查看整个音频上下文时提供了更好的性能。为了利用语音搜索等流媒体应用程序中非流游模型的好处,它通常在第二通过重新评分模式下使用。使用蒸汽模型生成的候选假设是使用非流程模型重新评分的。在这项工作中,我们在独立和重新评分模式的Flipkart语音搜索任务上评估了基于注意力的端到端ASR模型。这些模型基于收听拼写(LAS)编码器编码器架构。我们基于LSTM,变压器和构象异构体进行不同的编码器变化。我们将这些模型的延迟要求与它们的性能进行比较。总体而言,我们表明,变压器模型提供了可接受的延迟要求。我们报告的相对改善约为16%,第二次通过LAS重新评分,延迟开销低于5ms。我们还强调了CNN前端使用变压器体系结构的重要性,以达到可比的单词错误率(WER)。此外,我们观察到,在第二次通过重新评分模式下,所有编码器都提供了相似的好处,而在独立文本生成模式下,性能差异很明显。
translated by 谷歌翻译
统一的流和非流式的双通(U2)用于语音识别的端到端模型在流传输能力,准确性,实时因素(RTF)和延迟方面表现出很大的性能。在本文中,我们呈现U2 ++,U2的增强版本,进一步提高了准确性。 U2 ++的核心思想是在训练中同时使用标签序列的前向和向后信息来学习更丰富的信息,并在解码时结合前向和后向预测以提供更准确的识别结果。我们还提出了一种名为SPECSUB的新数据增强方法,以帮助U2 ++模型更准确和强大。我们的实验表明,与U2相比,U2 ++在训练中显示了更快的收敛,更好地鲁棒性对解码方法,以及U2上的一致5 \%-8 \%字错误率降低增益。在Aishell-1的实验中,我们通过u2 ++实现了一个4.63 \%的字符错误率(cer),其中没有流媒体设置和5.05 \%,具有320ms延迟的流设置。据我们所知,5.05 \%是Aishell-1测试集上的最佳发布的流媒体结果。
translated by 谷歌翻译
在本文中,我们提出了一种新的双通方法来统一一个模型中的流和非流媒体端到端(E2E)语音识别。我们的型号采用混合CTC /注意架构,其中编码器中的构装层被修改。我们提出了一种基于动态的块的注意力策略,以允许任意右上下文长度。在推理时间,CTC解码器以流式方式生成n最佳假设。只有更改块大小,可以轻松控制推理延迟。然后,CTC假设被注意力解码器重新筛选以获得最终结果。这种有效的备用过程导致句子级延迟非常小。我们在开放的170小时Aishell-1数据集上的实验表明,所提出的方法可以简单有效地统一流和非流化模型。在Aishell-1测试集上,与标准的非流式变压器相比,我们的统一模型在非流式ASR中实现了5.60%的相对字符错误率(CER)减少。同一模型在流式ASR系统中实现了5.42%的CER,640ms延迟。
translated by 谷歌翻译
由于无标记的文本和语音数据的广泛可用性,最近基于仅音频数据的仅文本和半监督培训已广受欢迎。在这项工作中,我们建议将纯文本和半监督培训纳入基于注意力的审议模型。通过将纯文本数据合并到培训审议文本编码器的变压器(BERT)的双向编码器表示中,以及使用联合声学和文本解码器(JATD)和半诉讼程序的大规模文本到语音和纯音频和音频话语培训,与基线审议相比,我们的各种任务减少了4%-12%。与最先进的语言模型(LM)纠正方法相比,审议模型将Google语音搜索降低了11%。我们表明,与具有合理的终端潜伏期的最先进的LM委员相比,审议模型还获得了正面的人类并排评估。
translated by 谷歌翻译
最近,语音界正在看到从基于深神经网络的混合模型移动到自动语音识别(ASR)的端到端(E2E)建模的显着趋势。虽然E2E模型在大多数基准测试中实现最先进的,但在ASR精度方面,混合模型仍然在当前的大部分商业ASR系统中使用。有很多实际的因素会影响生产模型部署决定。传统的混合模型,用于数十年的生产优化,通常擅长这些因素。在不为所有这些因素提供优异的解决方案,E2E模型很难被广泛商业化。在本文中,我们将概述最近的E2E模型的进步,专注于解决行业视角的挑战技术。
translated by 谷歌翻译
最近,基于注意的编码器 - 解码器(AED)模型对多个任务的端到端自动语音识别(ASR)显示了高性能。在此类模型中解决了过度控制,本文介绍了轻松关注的概念,这是一种简单地逐渐注入对训练期间对编码器 - 解码器注意重量的统一分配,其易于用两行代码实现。我们调查轻松关注跨不同AED模型架构和两个突出的ASR任务,华尔街日志(WSJ)和LibRisPeech的影响。我们发现,在用外部语言模型解码时,随着宽松的注意力训练的变压器始终如一地始终如一地遵循标准基线模型。在WSJ中,我们为基于变压器的端到端语音识别设置了一个新的基准,以3.65%的单词错误率,最优于13.1%的相对状态,同时仅引入单个HyperParameter。
translated by 谷歌翻译
设备的端到端(E2E)模型已显示出对质量和延迟的英语语音搜索任务的常规模型的改进。 E2E模型还显示了多语言自动语音识别(ASR)的有希望的结果。在本文中,我们将以前的容量解决方案扩展到流应用程序,并提出流媒体多语言E2E ASR系统,该系统在设备上完全运行,质量和延迟与单个单语言模型相当。为了实现这一目标,我们提出了一个编码器端量模型和一个终端(EOU)联合层,以提高质量和延迟权衡。我们的系统以语言不可知论的方式构建,允许它实时支持本条件的代码切换。为了解决大型模型的可行性问题,我们进行了设备分析,并用最近开发的嵌入解码器代替了耗时的LSTM解码器。通过这些更改,我们设法在不到实时的时间内在移动设备上运行了这样的系统。
translated by 谷歌翻译
格子形成了从自动语音识别系统产生的多个假设的紧凑型表示,并且已被证明可以提高与使用一个最佳假设的口语理解和语音转换等下游任务的性能。在这项工作中,我们展望了莱迪思提示在二次通过中抢救N-Best列表的有效性。我们用经常性网络编码格子,并培训注意Encoder-解码器模型,用于N-Best Rescoring。重新调用模型的重点模型在首先达到4-5%的相对字错误率和6-8%,注意到晶格和声学特征。我们展示了救援模型,注意了格格特优于模型,以注意力为N-Best假设。我们还研究了不同的方法来纳入格子编码器中的晶格重量,并展示他们对N-Best Rescoring的重要性。
translated by 谷歌翻译
语言模型(LMS)显着提高端到端模型(E2E)模型在训练过程中很少见的单词的识别准确性,当时在浅融合或重新恢复设置中。在这项工作中,我们介绍了LMS在判别培训框架中学习混合自动回旋传感器(HAT)模型的研究,以减轻有关使用LMS的训练与推理差距。对于浅融合设置,我们在假设生成和损失计算过程中都使用LMS,而LM感知的MWER训练模型可实现10 \%的相对改进,比用标准MWER在语音搜索测试集中培训的模型相对改进,其中包含稀有单词。对于重新设置,我们学会了一个小型神经模块,以数据依赖性方式产生串联的融合权重。该模型与常规MWER训练的模型相同,但无需清除融合重量。
translated by 谷歌翻译
我们提出了一种简单有效的自我监督学习方法,以供语音识别。该方法以随机预测量化器生成的离散标签的形式学习了一个模型,以预测蒙版的语音信号。尤其是量化器的语音输入带有随机初始化的矩阵,并在随机限制的代码簿中进行最近的邻居查找。在自我监督的学习过程中,矩阵和密码簿均未更新。由于未对随机预测量化器进行训练,并与语音识别模型分开,因此该设计使该方法具有灵活性,并且与通用语音识别体系结构兼容。在LibrisPeech上,我们的方法与以前的工作相比,使用非流式模型获得了与以前的工作相似的单词率,并且比WAV2VEC 2.0和WAP2VEC 2.0和w2v-bert提供了较低的单词率率和延迟。在多语言任务上,该方法还提供了与WAV2VEC 2.0和W2V-bert的显着改进。
translated by 谷歌翻译
最近,我们提供了Wenet,这是一种面向生产的端到端语音识别工具包,它引入了统一的两通道(U2)框架和内置运行时,以解决单个中的流和非流传输模式。模型。为了进一步提高ASR性能并促进各种生产要求,在本文中,我们提出了Wenet 2.0,并提供四个重要的更新。 (1)我们提出了U2 ++,这是一个带有双向注意解码器的统一的两次通行框架,其中包括通过左右注意力解码器的未来上下文信息,以提高共享编码器的代表性和在夺回阶段的表现。 (2)我们将基于N-Gram的语言模型和基于WFST的解码器引入WENET 2.0,从而促进了在生产方案中使用丰富的文本数据。 (3)我们设计了一个统一的上下文偏见框架,该框架利用特定于用户的上下文(例如联系人列表)为生产提供快速适应能力,并提高了使用LM和没有LM场景的ASR准确性。 (4)我们设计了一个统一的IO,以支持大规模数据进行有效的模型培训。总而言之,全新的WENET 2.0可在各种Corpora上的原始WENET上取得高达10 \%的相对识别性能提高,并提供了一些重要的以生产为导向的功能。
translated by 谷歌翻译
已知历史和未来的上下文信息对于准确的声学建模很重要。但是,获取未来的上下文会带来流式ASR的延迟。在本文中,我们提出了一个新的框架 - 块,模拟未来的上下文和解码(Cuside)以进行流语言识别。引入了一个新的仿真模块,以递归地模拟未来的上下文帧,而无需等待未来的上下文。使用自我监督的损失与ASR模型共同训练模拟模块;ASR模型通过通常的ASR损失(例如我们实验中使用的CTC-CRF)进行了优化。实验表明,与使用真实的未来框架作为正确的上下文相比,使用模拟的未来上下文可以大大降低延迟,同时保持识别精度。使用Cuside,我们在Aishell-1数据集上获得了新的最新流媒体ASR结果。
translated by 谷歌翻译
在本文中,我们提出了一种三阶段培训方法,提高低资源语言的语音识别准确性。我们探索并提出了一种有效的技术组合,如传输学习,编码器冻结,使用文本到语音(TTS)和半监督学习(SSL)。为了提高低资源意大利ASR的准确性,我们可以分别利用训练有素的英语模型,未标记的文本语料库和未标记的音频语料库,分别分别使用传输学习,TTS增强和SSL。在第一阶段,我们使用从训练有素的英语模型的转移学习。这主要有助于学习来自资源丰富的语言的声学信息。该阶段通过基线减少约24%的相对字错误率(WER)。在第二阶段,我们通过TTS数据增强利用未标记的文本数据来将语言信息合并到模型中。我们还在此阶段探索冻结声学编码器。 TTS数据增强有助于我们进一步减少〜21%相对〜21%。最后,在第三阶段,我们通过使用来自未标记的音频数据的SSL来减少另一个4%的相对。总体而言,我们的双通话识别系统在第一次通过的单调散文注意力(Mocha)和第二次通过的全部关注,相对于基线,减少了〜42%的WER。
translated by 谷歌翻译
语言识别对于自动语音识别(ASR)中的许多下游任务至关重要,并且有益于将多语言端到端的ASR集成为附加任务。在本文中,我们建议通过集成每帧语言标识符(LID)预测器来修改基于层压编码器的复发神经网络传感器(RNN-T)模型的结构。带有级联编码器的RNN-T可以使用不右键的第一通用解码来实现较低延迟的流动ASR,并使用二频道解码使用更长的右文本实现较低的单词错误率(WERS)。通过利用当前文章中的这种差异和统计池的流传输实现,该建议的方法可以实现准确的流盖预测,而几乎没有额外的测试时间成本。语音搜索数据集的实验结果具有9个语言语言位置,表明所提出的方法平均达到96.2%的盖子预测准确性,而与输入中的Oracle盖相同的二次通用方法。
translated by 谷歌翻译
我们提出了一种基于审议的新型方法来端到端(E2E)口语理解(SLU),其中流媒体自动语音识别(ASR)模型会产生第一频繁的假设和第二通通的自然语言(NLU)(NLU) )组件通过对ASR的文本和音频嵌入来生成语义解析。通过将E2E SLU制定为广义解码器,我们的系统能够支持复杂的组成语义结构。此外,ASR和NLU之间的参数共享使该系统特别适合资源受限的(内部设备)环境;我们提出的方法始终在TOPV2数据集的口头版本(Stop)的口语版本上始终优于强大管道NLU基线的0.60%至0.65%。我们证明了文本和音频功能的融合,再加上系统重写第一通道假设的能力,使我们的方法对ASR错误更加强大。最后,我们表明我们的方法可以显着减少从自然语音到合成语音训练时的降解,但是要使文本到语音(TTS)成为可行的解决方案,以扩大E2E SLU。
translated by 谷歌翻译
口语理解(SLU)系统提取文本成绩单和语义与意图和插槽相关的语言。 SLU系统通常由(1)自动语音识别(ASR)模块组成,(2)接口来自ASR相关输出的接口模块,以及(3)自然语言理解(NLU)模块。 SLU系统中的接口随附文本转录或更丰富的信息(例如从ASR到NLU)的信息。在本文中,我们研究界面如何影响与口语理解的联合培训。最值得注意的是,我们在公开可用的50小时SLURP数据集中获得了最新结果。我们首先利用通过文本界面连接的大型ASR和NLU模型,然后通过序列损耗函数共同训练这两个模型。对于未利用预位模型的场景,使用更丰富的神经界面通过联合序列损失训练获得了最佳结果。最后,我们显示了利用预期模型随培训数据规模增加的总体减少影响。
translated by 谷歌翻译
专家(MOE)的稀疏门控混合物可以用少量计算复杂性来放大网络容量。在这项工作中,我们调查多语言自动语音识别(ASR)网络如何用简单的路由算法进行缩放,以便实现更好的准确性。更具体地,我们将稀疏门的MOE技术应用于两种网络:序列到序列变压器(S2S-T)和变压器换能器(T-T)。我们通过一组关于多语言数据的一组ASR实验证明了MOE网络可以分别使用S2S-T和T-T将相对字误差率降低16.5 \%和4.7 \%。此外,我们在各种条件下彻底调查了MOE对T-T架构上的T-T架构的影响:流模式,非流模式,使用语言ID和带有MOE的标签解码器。
translated by 谷歌翻译
在本文中,我们提出了一个名为Wenet的开源,生产第一和生产准备的语音识别工具包,其中实现了一种新的双通方法,以统一流传输和非流媒体端到端(E2E)语音识别单一模型。 WENET的主要动机是缩放研究与E2E演示识别模型的生产之间的差距。 Wenet提供了一种有效的方法,可以在几个真实情景中运送ASR应用程序,这是其他开源E2E语音识别工具包的主要差异和优势。在我们的工具包中,实现了一种新的双通方法。我们的方法提出了一种基于动态的基于块的关注策略,变压器层,允许任意右上下文长度修改在混合CTC /注意架构中。只有更改块大小,可以轻松控制推理延迟。然后,CTC假设被注意力解码器重新筛选以获得最终结果。我们在使用WENET上的Aishell-1数据集上的实验表明,与标准的非流式变压器相比,我们的模型在非流式ASR中实现了5.03 \%相对字符的误差率(CER)。在模型量化之后,我们的模型执行合理的RTF和延迟。
translated by 谷歌翻译
在本文中,我们提出了一个动态的级联编码器自动语音识别(ASR)模型,该模型统一了不同部署方案的模型。此外,该模型可以显着降低模型尺寸和功耗而不会损失质量。也就是说,使用动态级联编码器模型,我们探索了三种技术,以最大程度地提高每个模型大小的性能:1)在共享编码器时为每个子模型使用单独的解码器;2)使用漏斗 - 提高编码器效率;3)平衡因果关系的大小,以提高质量和适合部署限制。总体而言,与基线级联编码器模型相比,拟议的大中等模型的尺寸较小30%,并将功耗降低了33%。统一大型,中和小型模型的三重大小模型可实现37%的总尺寸减少,而质量损失最小,同时大大减少了拥有单独模型的工程工作。
translated by 谷歌翻译
我们总结了使用巨大的自动语音识别(ASR)模型的大量努力的结果,该模型使用包含大约一百万小时音频的大型,多样的未标记数据集进行了预训练。我们发现,即使对于拥有数万个小时的标记数据的非常大的任务,预训练,自我培训和扩大模型大小的组合也大大提高了数据效率。特别是,在具有34K小时标记数据的ASR任务上,通过微调80亿个参数预先训练的构象异构体模型,我们可以匹配最先进的(SOTA)性能(SOTA)的性能,只有3%的培训数据和通过完整的训练集可以显着改善SOTA。我们还报告了从使用大型预训练和自我训练的模型来完成一系列下游任务所获得的普遍利益,这些任务涵盖了广泛的语音域,并涵盖了多个数据集大小的大小,包括在许多人中获得SOTA性能公共基准。此外,我们利用预先训练的网络的学会表示,在非ASR任务上实现SOTA结果。
translated by 谷歌翻译