最近的Davies等(2021)的纸张描述了深度学习(DL)技术如何用于找到导致两个原始数学结果的合理假设:一个在结理论中,一个在代表理论中。我认为DL技术对数学的意义和新颖性在审查的论文中显着夸大,并且在流行科学出版社的一些账户中被疯狂地夸大了。在结理论结果中,DL的作用很小,并且传统的统计分析可能已经足够了。在代表理论结果中,DL的作用要大得多;然而,几十年来,它与实验数学的实际情况中的实物不同。此外,目前尚不清楚DL的独特特征,使其有用的是在此处将应用于各种数学问题。最后,我争辩说,这里的DL“指导人类直觉”是无益的和误导; DL主要是什么,是要将许多可能的猜想标记为虚假和其他一些可能值得研究的其他人。当然,表示理论结果代表了DL对数学研究的原始和有趣的应用,但其重要意义是不确定的。
translated by 谷歌翻译
哲学家最近专注于批判性的认识论挑战,这些挑战是由深神经网络的不透明性引起的。从这本文献中可以得出结论,即使不是不可能,使用不透明模型进行良好的科学是极具挑战性的。然而,这很难与最近对科学的AI乐观情绪的繁荣以及最近受AI方法驱动的一系列科学突破的泛滥。在本文中,我认为,哲学悲观和科学乐观主义之间的脱节是由于未能研究AI实际在科学中的使用而驱动的。我表明,为了理解AI驱动的突破的认知理由,哲学家必须研究深度学习的作用,这是发现更广泛的发现过程的一部分。在这方面,“发现背景”与“理由背景”之间的哲学区别在这方面很有帮助。我证明了与科学文献中有两个案例进行这种区别的重要性,并表明认知不透明度无需降低AI的能力,使科学家带来了显着且合理的突破。
translated by 谷歌翻译
Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.
translated by 谷歌翻译
我们使用深神经网络来机器学习各种尺寸的结不变之间的相关性。感兴趣的三维不变性是琼斯多项式$ j(q)$,四维不变性是khovanov多项式$ \ text {kh}(q,t)$,平滑的切片属$ g $,以及拉斯穆森的$ s $-invariant。我们发现双层前馈神经网络可以从$ \ text {kh}(q,-q ^ {-4})$大于99美元的$准确性。通过现在的DISPROVER骑士移动猜想,在结理论中存在对这种性能的理论解释,这些表现在我们的数据集中的所有结遵守。更令人惊讶的是,我们发现类似于$ \ text {kh}(q,-q ^ {-2})$的类似表现,这表明Khovanov与李同源理论之间的新关系。网络从$ \ text {kh}(q,t)$以同样高的准确度预测到$ g $,我们讨论了机器学习$ s $的程度,而不是$ g $,因为有一般不平等$ | S | \ Leq 2G $。 Jones多项式作为三维不变性,并不明显与$ S $或$ G $相关,但网络从$ j(q)$之前预测,网络达到大于95美元的$准确性。此外,通过在统一的根部评估$ j(q)$来实现类似的准确度。这表明与SU(2)$ CHERN-SIMONS理论的关系,我们审查了Khovanov同源性的仪表理论建设,这可能与解释网络的性能相关。
translated by 谷歌翻译
The field of artificial intelligence (AI), regarded as one of the most enigmatic areas of science, has witnessed exponential growth in the past decade including a remarkably wide array of applications, having already impacted our everyday lives. Advances in computing power and the design of sophisticated AI algorithms have enabled computers to outperform humans in a variety of tasks, especially in the areas of computer vision and speech recognition. Yet, AI's path has never been smooth, having essentially fallen apart twice in its lifetime ('winters' of AI), both after periods of popular success ('summers' of AI). We provide a brief rundown of AI's evolution over the course of decades, highlighting its crucial moments and major turning points from inception to the present. In doing so, we attempt to learn, anticipate the future, and discuss what steps may be taken to prevent another 'winter'.
translated by 谷歌翻译
Alphazero,Leela Chess Zero和Stockfish Nnue革新了计算机国际象棋。本书对此类引擎的技术内部工作进行了完整的介绍。该书分为四个主要章节 - 不包括第1章(简介)和第6章(结论):第2章引入神经网络,涵盖了所有用于构建深层网络的基本构建块,例如Alphazero使用的网络。内容包括感知器,后传播和梯度下降,分类,回归,多层感知器,矢量化技术,卷积网络,挤压网络,挤压和激发网络,完全连接的网络,批处理归一化和横向归一化和跨性线性单位,残留层,剩余层,过度效果和底漆。第3章介绍了用于国际象棋发动机以及Alphazero使用的经典搜索技术。内容包括minimax,alpha-beta搜索和蒙特卡洛树搜索。第4章展示了现代国际象棋发动机的设计。除了开创性的Alphago,Alphago Zero和Alphazero我们涵盖Leela Chess Zero,Fat Fritz,Fat Fritz 2以及有效更新的神经网络(NNUE)以及MAIA。第5章是关于实施微型α。 Shexapawn是国际象棋的简约版本,被用作为此的示例。 Minimax搜索可以解决六ap峰,并产生了监督学习的培训位置。然后,作为比较,实施了类似Alphazero的训练回路,其中通过自我游戏进行训练与强化学习结合在一起。最后,比较了类似α的培训和监督培训。
translated by 谷歌翻译
内容的离散和连续表示(例如,语言或图像)具有有趣的属性,以便通过机器的理解或推理此内容来探索或推理。该职位论文提出了我们关于离散和持续陈述的作用及其在深度学习领域的作用的意见。目前的神经网络模型计算连续值数据。信息被压缩成密集,分布式嵌入式。通过Stark对比,人类在他们的语言中使用离散符号。此类符号代表了来自共享上下文信息的含义的世界的压缩版本。此外,人工推理涉及在认知水平处符号操纵,这促进了抽象的推理,知识和理解的构成,泛化和高效学习。通过这些见解的动机,在本文中,我们认为,结合离散和持续的陈述及其处理对于构建展示一般情报形式的系统至关重要。我们建议并讨论了几个途径,可以在包含离散元件来结合两种类型的陈述的优点来改进当前神经网络。
translated by 谷歌翻译
Neural-symbolic computing (NeSy), which pursues the integration of the symbolic and statistical paradigms of cognition, has been an active research area of Artificial Intelligence (AI) for many years. As NeSy shows promise of reconciling the advantages of reasoning and interpretability of symbolic representation and robust learning in neural networks, it may serve as a catalyst for the next generation of AI. In the present paper, we provide a systematic overview of the important and recent developments of research on NeSy AI. Firstly, we introduce study history of this area, covering early work and foundations. We further discuss background concepts and identify key driving factors behind the development of NeSy. Afterward, we categorize recent landmark approaches along several main characteristics that underline this research paradigm, including neural-symbolic integration, knowledge representation, knowledge embedding, and functionality. Then, we briefly discuss the successful application of modern NeSy approaches in several domains. Finally, we identify the open problems together with potential future research directions. This survey is expected to help new researchers enter this rapidly-developing field and accelerate progress towards data-and knowledge-driven AI.
translated by 谷歌翻译
智能机器真的聪明吗?智力的基本哲学概念是否令人满意地描述当前系统的工作方式?了解智力的必要条件吗?如果一台机器能理解,我们应该将主观性归因于它吗?本文解决了决定所谓的“智能机器”是否能够理解而不是仅仅处理标志的问题。它处理语法和语义之间的关系。主要论文涉及语义的必然性对于建造有意识机器的可能性的任何讨论,并凝结为以下两个原则:直觉”; “如果语义不能简化为语法,那么机器就无法理解。”我们的结论指出,没有必要将理解归因于机器以解释其表现出的“智能”行为。仅仅是句法和机械智力的方法作为解决任务的工具,足以证明它可以在技术发展的当前状态中显示的操作范围。
translated by 谷歌翻译
讨论了与科学,工程,建筑和人为因素相关的月球表面上的运输设施问题。未来十年制造的后勤决策可能对财务成功至关重要。除了概述一些问题及其与数学和计算的关系外,本文还为决策者,科学家和工程师提供了有用的资源。
translated by 谷歌翻译
主张神经符号人工智能(NESY)断言,将深度学习与象征性推理相结合将导致AI更强大,而不是本身。像深度学习一样成功,人们普遍认为,即使我们最好的深度学习系统也不是很擅长抽象推理。而且,由于推理与语言密不可分,因此具有直觉的意义,即自然语言处理(NLP)将成为NESY特别适合的候选人。我们对实施NLP实施NESY的研究进行了结构化审查,目的是回答Nesy是否确实符合其承诺的问题:推理,分布概括,解释性,学习和从小数据的可转让性以及新的推理到新的域。我们研究了知识表示的影响,例如规则和语义网络,语言结构和关系结构,以及隐式或明确的推理是否有助于更高的承诺分数。我们发现,将逻辑编译到神经网络中的系统会导致满足最NESY的目标,而其他因素(例如知识表示或神经体系结构的类型)与实现目标没有明显的相关性。我们发现在推理的定义方式上,特别是与人类级别的推理有关的许多差异,这会影响有关模型架构的决策并推动结论,这些结论在整个研究中并不总是一致的。因此,我们倡导采取更加有条不紊的方法来应用人类推理的理论以及适当的基准的发展,我们希望这可以更好地理解该领域的进步。我们在GitHub上提供数据和代码以进行进一步分析。
translated by 谷歌翻译
近年来,随着新颖的策略和应用,神经网络一直在迅速扩展。然而,尽管不可避免地会针对关键应用程序来解决这些挑战,例如神经网络技术诸如神经网络技术中仍未解决诸如神经网络技术的挑战。已经尝试通过用符号表示来表示和嵌入域知识来克服神经网络计算中的挑战。因此,出现了神经符号学习(Nesyl)概念,其中结合了符号表示的各个方面,并将常识带入神经网络(Nesyl)。在可解释性,推理和解释性至关重要的领域中,例如视频和图像字幕,提问和推理,健康信息学和基因组学,Nesyl表现出了有希望的结果。这篇综述介绍了一项有关最先进的Nesyl方法的全面调查,其原理,机器和深度学习算法的进步,诸如Opthalmology之类的应用以及最重要的是该新兴领域的未来观点。
translated by 谷歌翻译
Winograd架构挑战 - 一套涉及代词参考消歧的双句话,似乎需要使用致辞知识 - 是由2011年的赫克托勒维克斯提出的。到2019年,基于大型预先训练的变压器的一些AI系统基于语言模型和微调这些问题,精度优于90%。在本文中,我们审查了Winograd架构挑战的历史并评估了其重要性。
translated by 谷歌翻译
在过去的几年中,计算机视觉的显着进步总的来说是归因于深度学习,这是由于大量标记数据的可用性所推动的,并与GPU范式的爆炸性增长配对。在订阅这一观点的同时,本书批评了该领域中所谓的科学进步,并在基于信息的自然法则的框架内提出了对愿景的调查。具体而言,目前的作品提出了有关视觉的基本问题,这些问题尚未被理解,引导读者走上了一个由新颖挑战引起的与机器学习基础共鸣的旅程。中心论点是,要深入了解视觉计算过程,有必要超越通用机器学习算法的应用,而要专注于考虑到视觉信号的时空性质的适当学习理论。
translated by 谷歌翻译
在流行媒体中,人造代理商的意识出现与同时实现人类或超人水平智力的那些相同的代理之间通常存在联系。在这项工作中,我们探讨了意识和智力之间这种看似直观的联系的有效性和潜在应用。我们通过研究与三种当代意识功能理论相关的认知能力:全球工作空间理论(GWT),信息生成理论(IGT)和注意力模式理论(AST)。我们发现,这三种理论都将有意识的功能专门与人类领域将军智力的某些方面联系起来。有了这个见解,我们转向人工智能领域(AI),发现尽管远未证明一般智能,但许多最先进的深度学习方法已经开始纳入三个功能的关键方面理论。确定了这一趋势后,我们以人类心理时间旅行的激励例子来提出方式,其中三种理论中每种理论的见解都可以合并为一个单一的统一和可实施的模型。鉴于三种功能理论中的每一种都可以通过认知能力来实现这一可能,因此,具有精神时间旅行的人造代理不仅具有比当前方法更大的一般智力,而且还与我们当前对意识功能作用的理解更加一致在人类中,这使其成为AI研究的有希望的近期目标。
translated by 谷歌翻译
十年自2010年以来,人工智能成功一直处于计算机科学和技术的最前沿,传染媒介空间模型已经巩固了人工智能最前沿的位置。与此同时,量子计算机已经变得更加强大,主要进步的公告经常在新闻中。这些区域的基础的数学技术比有时意识到更多的共同之处。传染媒介空间在20世纪30年代的量子力学的公理心脏上采取了位置,这一采用是从矢量空间的线性几何形状推导逻辑和概率的关键动机。粒子之间的量子相互作用是使用张量产品进行建模的,其也用于表达人工神经网络中的物体和操作。本文介绍了这些常见的数学区域中的一些,包括如何在人工智能(AI)中使用的示例,特别是在自动推理和自然语言处理(NLP)中。讨论的技术包括矢量空间,标量产品,子空间和含义,正交投影和否定,双向矩阵,密度矩阵,正算子和张量产品。应用领域包括信息检索,分类和含义,建模字传感和歧义,知识库的推断和语义构成。其中一些方法可能会在量子硬件上实现。该实施中的许多实际步骤都处于早期阶段,其中一些已经实现了。解释一些常见的数学工具可以帮助AI和量子计算中的研究人员进一步利用这些重叠,识别和沿途探索新方向。
translated by 谷歌翻译
深度学习的成功导致了包括计算机视觉在内的许多计算机科学领域的快速转变和增长。在这项工作中,我们通过从媒体考古学的角度分析研究论文中的数字和表,通过计算机视觉研究论文本身来研究这种增长的影响。我们通过对涵盖计算机视觉,图形和可视化的资深研究人员的访谈以及十年的视觉会议论文的计算分析进行了调查。我们的分析重点是在广告,衡量和传播日益商品化的“贡献”中发挥作用的要素。我们认为,这些元素中的每一个都由计算机视觉的气候塑造和塑造,最终为该商品化做出了贡献。通过这项工作,我们试图激励有关研究论文设计和更广泛的社会技术出版系统的未来讨论。
translated by 谷歌翻译
本次调查绘制了用于分析社交媒体数据的生成方法的研究状态的广泛的全景照片(Sota)。它填补了空白,因为现有的调查文章在其范围内或被约会。我们包括两个重要方面,目前正在挖掘和建模社交媒体的重要性:动态和网络。社会动态对于了解影响影响或疾病的传播,友谊的形成,友谊的形成等,另一方面,可以捕获各种复杂关系,提供额外的洞察力和识别否则将不会被注意的重要模式。
translated by 谷歌翻译
最近有一项激烈的活动在嵌入非常高维和非线性数据结构的嵌入中,其中大部分在数据科学和机器学习文献中。我们分四部分调查这项活动。在第一部分中,我们涵盖了非线性方法,例如主曲线,多维缩放,局部线性方法,ISOMAP,基于图形的方法和扩散映射,基于内核的方法和随机投影。第二部分与拓扑嵌入方法有关,特别是将拓扑特性映射到持久图和映射器算法中。具有巨大增长的另一种类型的数据集是非常高维网络数据。第三部分中考虑的任务是如何将此类数据嵌入中等维度的向量空间中,以使数据适合传统技术,例如群集和分类技术。可以说,这是算法机器学习方法与统计建模(所谓的随机块建模)之间的对比度。在论文中,我们讨论了两种方法的利弊。调查的最后一部分涉及嵌入$ \ mathbb {r}^ 2 $,即可视化中。提出了三种方法:基于第一部分,第二和第三部分中的方法,$ t $ -sne,UMAP和大节。在两个模拟数据集上进行了说明和比较。一个由嘈杂的ranunculoid曲线组成的三胞胎,另一个由随机块模型和两种类型的节点产生的复杂性的网络组成。
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译