哲学家最近专注于批判性的认识论挑战,这些挑战是由深神经网络的不透明性引起的。从这本文献中可以得出结论,即使不是不可能,使用不透明模型进行良好的科学是极具挑战性的。然而,这很难与最近对科学的AI乐观情绪的繁荣以及最近受AI方法驱动的一系列科学突破的泛滥。在本文中,我认为,哲学悲观和科学乐观主义之间的脱节是由于未能研究AI实际在科学中的使用而驱动的。我表明,为了理解AI驱动的突破的认知理由,哲学家必须研究深度学习的作用,这是发现更广泛的发现过程的一部分。在这方面,“发现背景”与“理由背景”之间的哲学区别在这方面很有帮助。我证明了与科学文献中有两个案例进行这种区别的重要性,并表明认知不透明度无需降低AI的能力,使科学家带来了显着且合理的突破。
translated by 谷歌翻译
There has been a recent resurgence in the area of explainable artificial intelligence as researchers and practitioners seek to make their algorithms more understandable. Much of this research is focused on explicitly explaining decisions or actions to a human observer, and it should not be controversial to say that looking at how humans explain to each other can serve as a useful starting point for explanation in artificial intelligence. However, it is fair to say that most work in explainable artificial intelligence uses only the researchers' intuition of what constitutes a 'good' explanation. There exists vast and valuable bodies of research in philosophy, psychology, and cognitive science of how people define, generate, select, evaluate, and present explanations, which argues that people employ certain cognitive biases and social expectations towards the explanation process. This paper argues that the field of explainable artificial intelligence should build on this existing research, and reviews relevant papers from philosophy, cognitive psychology/science, and social psychology, which study these topics. It draws out some important findings, and discusses ways that these can be infused with work on explainable artificial intelligence.
translated by 谷歌翻译
我们概述了新兴机会和挑战,以提高AI对科学发现的效用。AI为行业的独特目标与AI科学的目标创造了识别模式中的识别模式与来自数据的发现模式之间的紧张。如果我们解决了与域驱动的科学模型和数据驱动的AI学习机之间的“弥补差距”相关的根本挑战,那么我们预计这些AI模型可以改变假说发电,科学发现和科学过程本身。
translated by 谷歌翻译
可解释的人工智能和可解释的机器学习是重要性越来越重要的研究领域。然而,潜在的概念仍然难以捉摸,并且缺乏普遍商定的定义。虽然社会科学最近的灵感已经重新分为人类受助人的需求和期望的工作,但该领域仍然错过了具体的概念化。通过审查人类解释性的哲学和社会基础,我们采取措施来解决这一挑战,然后我们转化为技术领域。特别是,我们仔细审查了算法黑匣子的概念,并通过解释过程确定的理解频谱并扩展了背景知识。这种方法允许我们将可解释性(逻辑)推理定义为在某些背景知识下解释的透明洞察(进入黑匣子)的解释 - 这是一个从事在Admoleis中理解的过程。然后,我们采用这种概念化来重新审视透明度和预测权力之间的争议权差异,以及对安特 - 人穴和后宫后解释者的影响,以及可解释性发挥的公平和问责制。我们还讨论机器学习工作流程的组件,可能需要可解释性,从以人为本的可解释性建立一系列思想,重点介绍声明,对比陈述和解释过程。我们的讨论调整并补充目前的研究,以帮助更好地导航开放问题 - 而不是试图解决任何个人问题 - 从而为实现的地面讨论和解释的人工智能和可解释的机器学习的未来进展奠定了坚实的基础。我们结束了我们的研究结果,重新审视了实现所需的算法透明度水平所需的人以人为本的解释过程。
translated by 谷歌翻译
过去十年已经看到人工智能(AI)的显着进展,这导致了用于解决各种问题的算法。然而,通过增加模型复杂性并采用缺乏透明度的黑匣子AI模型来满足这种成功。为了响应这种需求,已经提出了说明的AI(Xai)以使AI更透明,从而提高关键结构域中的AI。虽然有几个关于Xai主题的Xai主题的评论,但在Xai中发现了挑战和潜在的研究方向,这些挑战和研究方向被分散。因此,本研究为Xai组织的挑战和未来的研究方向提出了系统的挑战和未来研究方向:(1)基于机器学习生命周期的Xai挑战和研究方向,基于机器的挑战和研究方向阶段:设计,开发和部署。我们认为,我们的META调查通过为XAI地区的未来探索指导提供了XAI文学。
translated by 谷歌翻译
背景信息:在过去几年中,机器学习(ML)一直是许多创新的核心。然而,包括在所谓的“安全关键”系统中,例如汽车或航空的系统已经被证明是非常具有挑战性的,因为ML的范式转变为ML带来完全改变传统认证方法。目的:本文旨在阐明与ML为基础的安全关键系统认证有关的挑战,以及文献中提出的解决方案,以解决它们,回答问题的问题如何证明基于机器学习的安全关键系统?'方法:我们开展2015年至2020年至2020年之间发布的研究论文的系统文献综述(SLR),涵盖了与ML系统认证有关的主题。总共确定了217篇论文涵盖了主题,被认为是ML认证的主要支柱:鲁棒性,不确定性,解释性,验证,安全强化学习和直接认证。我们分析了每个子场的主要趋势和问题,并提取了提取的论文的总结。结果:单反结果突出了社区对该主题的热情,以及在数据集和模型类型方面缺乏多样性。它还强调需要进一步发展学术界和行业之间的联系,以加深域名研究。最后,它还说明了必须在上面提到的主要支柱之间建立连接的必要性,这些主要柱主要主要研究。结论:我们强调了目前部署的努力,以实现ML基于ML的软件系统,并讨论了一些未来的研究方向。
translated by 谷歌翻译
在流行媒体中,人造代理商的意识出现与同时实现人类或超人水平智力的那些相同的代理之间通常存在联系。在这项工作中,我们探讨了意识和智力之间这种看似直观的联系的有效性和潜在应用。我们通过研究与三种当代意识功能理论相关的认知能力:全球工作空间理论(GWT),信息生成理论(IGT)和注意力模式理论(AST)。我们发现,这三种理论都将有意识的功能专门与人类领域将军智力的某些方面联系起来。有了这个见解,我们转向人工智能领域(AI),发现尽管远未证明一般智能,但许多最先进的深度学习方法已经开始纳入三个功能的关键方面理论。确定了这一趋势后,我们以人类心理时间旅行的激励例子来提出方式,其中三种理论中每种理论的见解都可以合并为一个单一的统一和可实施的模型。鉴于三种功能理论中的每一种都可以通过认知能力来实现这一可能,因此,具有精神时间旅行的人造代理不仅具有比当前方法更大的一般智力,而且还与我们当前对意识功能作用的理解更加一致在人类中,这使其成为AI研究的有希望的近期目标。
translated by 谷歌翻译
保证案件旨在为其最高主张的真理提供合理的信心,这通常涉及安全或保障。那么一个自然的问题是,案件提供了“多少”信心?我们认为,置信度不能简化为单个属性或测量。取而代之的是,我们建议它应该基于以三种不同观点的属性为基础:正面,消极和残留疑问。积极的观点考虑了该案件的证据和总体论点结合起来的程度,以表明其主张的信念是正当的。我们为理由设置了一个高标准,要求它是不可行的。对此的主要积极度量是健全性,它将论点解释为逻辑证明。对证据的信心可以概率地表达,我们使用确认措施来确保证据的“权重”跨越了一定的阈值。此外,可以通过使用概率逻辑的参数步骤从证据中汇总概率,以产生我们所谓的索赔概率估值。负面观点记录了对案件的怀疑和挑战,通常表示为叛逆者及其探索和解决。保证开发商必须防止确认偏见,并应在制定案件时大力探索潜在的叛逆者,并应记录下来及其解决方案,以避免返工并帮助审阅者。残留疑问:世界不确定,因此并非所有潜在的叛逆者都可以解决。我们探索风险,可能认为它们是可以接受或不可避免的。但是,至关重要的是,这些判断是有意识的判断,并且在保证案例中记录下来。本报告详细介绍了这些观点,并指示了我们的保证2.0的原型工具集如何协助他们的评估。
translated by 谷歌翻译
大规模的语言技术越来越多地用于与人类在不同情况下的各种形式的交流中。这些技术的一种特殊用例是对话剂,它会根据提示和查询输出自然语言文本。这种参与方式提出了许多社会和道德问题。例如,将对话剂与人类规范或价值观相结合意味着什么?它们应该与哪些规范或价值观保持一致?如何实现这一目标?在本文中,我们提出了许多步骤来帮助回答这些问题。我们首先要对对话代理人和人类对话者之间语言交流的基础进行哲学分析。然后,我们使用此分析来识别和制定理想的对话规范,这些规范可以控制人类与对话代理之间的成功语言交流。此外,我们探讨了如何使用这些规范来使对话剂与在一系列不同的话语领域中的人类价值相结合。最后,我们讨论了我们对与这些规范和价值观一致的对话代理设计的建议的实际含义。
translated by 谷歌翻译
The need for AI systems to provide explanations for their behaviour is now widely recognised as key to their adoption. In this paper, we examine the problem of trustworthy AI and explore what delivering this means in practice, with a focus on healthcare applications. Work in this area typically treats trustworthy AI as a problem of Human-Computer Interaction involving the individual user and an AI system. However, we argue here that this overlooks the important part played by organisational accountability in how people reason about and trust AI in socio-technical settings. To illustrate the importance of organisational accountability, we present findings from ethnographic studies of breast cancer screening and cancer treatment planning in multidisciplinary team meetings to show how participants made themselves accountable both to each other and to the organisations of which they are members. We use these findings to enrich existing understandings of the requirements for trustworthy AI and to outline some candidate solutions to the problems of making AI accountable both to individual users and organisationally. We conclude by outlining the implications of this for future work on the development of trustworthy AI, including ways in which our proposed solutions may be re-used in different application settings.
translated by 谷歌翻译
The optimal liability framework for AI systems remains an unsolved problem across the globe. In a much-anticipated move, the European Commission advanced two proposals outlining the European approach to AI liability in September 2022: a novel AI Liability Directive and a revision of the Product Liability Directive. They constitute the final, and much-anticipated, cornerstone of AI regulation in the EU. Crucially, the liability proposals and the EU AI Act are inherently intertwined: the latter does not contain any individual rights of affected persons, and the former lack specific, substantive rules on AI development and deployment. Taken together, these acts may well trigger a Brussels effect in AI regulation, with significant consequences for the US and other countries. This paper makes three novel contributions. First, it examines in detail the Commission proposals and shows that, while making steps in the right direction, they ultimately represent a half-hearted approach: if enacted as foreseen, AI liability in the EU will primarily rest on disclosure of evidence mechanisms and a set of narrowly defined presumptions concerning fault, defectiveness and causality. Hence, second, the article suggests amendments, which are collected in an Annex at the end of the paper. Third, based on an analysis of the key risks AI poses, the final part of the paper maps out a road for the future of AI liability and regulation, in the EU and beyond. This includes: a comprehensive framework for AI liability; provisions to support innovation; an extension to non-discrimination/algorithmic fairness, as well as explainable AI; and sustainability. I propose to jump-start sustainable AI regulation via sustainability impact assessments in the AI Act and sustainable design defects in the liability regime. In this way, the law may help spur not only fair AI and XAI, but potentially also sustainable AI (SAI).
translated by 谷歌翻译
ML社区认识到预期和减轻基准研究的潜在负面影响的重要性。在该立场论文中,我们认为,需要更多的关注,这需要对ML基准的技术和科学核心的道德风险领域。我们确定了人类智商和ML基准之间被忽视的结构相似性。人类智能和ML基准在设定标准以描述,评估和比较与智能相关的任务的标准方面具有相似之处。这使我们能够从ML基准社区考虑需要考虑的女权主义哲学哲学哲学中解开课程。最后,我们概述了基准研究伦理和伦理评论的实用建议。
translated by 谷歌翻译
The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often referred to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of attempts so far at handling uncertainty in general and formalizing this distinction in particular.
translated by 谷歌翻译
虽然数据驱动的材料科学和化学方法采用了令人兴奋的,早期的阶段,实现了机器学习模型的真正潜力,以实现科学发现,它们必须具有超出纯粹预测力的品质。模型的预测和内在工作应由人类专家提供一定程度的解释性,允许识别潜在的模型问题或限制,建立对模型预测的信任和揭示可能导致科学洞察力的意外相关性。在这项工作中,我们总结了对材料科学和化学的可解释性和解释性技术的应用,并讨论了这些技术如何改善科学研究的结果。我们讨论了材料科学中可解释机器学习的各种挑战,更广泛地在科学环境中。特别是,我们强调通过纯粹解释机器学习模型和模型解释的不确定性估计的不确定估计来强调推断因果关系或达到泛化的风险。最后,我们在其他领域展示了一些可能会使物质科学和化学问题的可解释性的令人兴奋的发展。
translated by 谷歌翻译
Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.
translated by 谷歌翻译
Black box machine learning models are currently being used for high stakes decision-making throughout society, causing problems throughout healthcare, criminal justice, and in other domains. People have hoped that creating methods for explaining these black box models will alleviate some of these problems, but trying to explain black box models, rather than creating models that are interpretable in the first place, is likely to perpetuate bad practices and can potentially cause catastrophic harm to society. There is a way forward -it is to design models that are inherently interpretable. This manuscript clarifies the chasm between explaining black boxes and using inherently interpretable models, outlines several key reasons why explainable black boxes should be avoided in high-stakes decisions, identifies challenges to interpretable machine learning, and provides several example applications where interpretable models could potentially replace black box models in criminal justice, healthcare, and computer vision. IntroductionThere has been an increasing trend in healthcare and criminal justice to leverage machine learning (ML) for high-stakes prediction applications that deeply impact human lives. Many of the ML models are black boxes that do not explain their predictions in a way that humans can understand. The lack of transparency and accountability of predictive models can have (and has already had) severe consequences; there have been cases of people incorrectly denied parole [1], poor bail decisions leading to the release of dangerous criminals, ML-based pollution models stating that highly polluted air was safe to breathe [2], and generally poor use of limited valuable resources in criminal justice, medicine, energy reliability, finance, and in other domains [3].Rather than trying to create models that are inherently interpretable, there has been a recent explosion of work on "Explainable ML," where a second (posthoc) model is created to explain the first black box model. This is problematic. Explanations are often not reliable, and can be misleading, as we discuss below. If we instead use models that are inherently interpretable, they provide their own explanations, which are faithful to what the model actually computes.In what follows, we discuss the problems with Explainable ML, followed by the challenges in Interpretable ML. This document is mainly relevant to high-stakes decision making and troubleshooting models, which are the main two reasons one might require an interpretable or explainable model. Interpretability is a domain-specific notion [4,5,6,7], so there cannot be an all-purpose definition. Usually, however, an interpretable machine learning model is constrained in model form so that it is either useful to someone, or obeys structural knowledge of the domain, such as monotonicity [e.g., 8], causality, structural (generative) constraints, additivity [9], or physical constraints that come from domain knowledge. Interpretable mo
translated by 谷歌翻译
研究人员对科学发现多年来,研究人员已经实施了观察 - 假设 - 预测 - 实验循环的研究范式。然而,随着MEGA级和毫米科学研究的数据爆炸,有时候很难手动分析数据并提出新的假设来推动科学发现的周期。在本文中,我们介绍了一个可解释的AI辅助范式的科学发现。关键是使用可解释的AI(XAI)来帮助推导数据或模型解释和科学发现。我们展示了如何计算和数据密集型方法 - 以及实验和理论方法 - 可以无缝融合为科学研究。为了展示AI辅助科学发现过程,并为我们历史上一些最伟大的思想付出了尊重,我们展示了Kepler的行星运动和牛顿定律的普遍引力的定律可以通过基于Tycho的(可解释)的AI重新发现Brahe的天文观测数据,其作品在16-17世纪领先科学革命。这项工作还强调了可解释的AI(与黑匣子AI)在科学发现中的重要性,以帮助人类防止或更好地为未来可能发生的技术奇点做好准备。
translated by 谷歌翻译
最近的Davies等(2021)的纸张描述了深度学习(DL)技术如何用于找到导致两个原始数学结果的合理假设:一个在结理论中,一个在代表理论中。我认为DL技术对数学的意义和新颖性在审查的论文中显着夸大,并且在流行科学出版社的一些账户中被疯狂地夸大了。在结理论结果中,DL的作用很小,并且传统的统计分析可能已经足够了。在代表理论结果中,DL的作用要大得多;然而,几十年来,它与实验数学的实际情况中的实物不同。此外,目前尚不清楚DL的独特特征,使其有用的是在此处将应用于各种数学问题。最后,我争辩说,这里的DL“指导人类直觉”是无益的和误导; DL主要是什么,是要将许多可能的猜想标记为虚假和其他一些可能值得研究的其他人。当然,表示理论结果代表了DL对数学研究的原始和有趣的应用,但其重要意义是不确定的。
translated by 谷歌翻译
能够分析和量化人体或行为特征的系统(称为生物识别系统)正在使用和应用变异性增长。由于其从手工制作的功能和传统的机器学习转变为深度学习和自动特征提取,因此生物识别系统的性能增加到了出色的价值。尽管如此,这种快速进步的成本仍然尚不清楚。由于其不透明度,深层神经网络很难理解和分析,因此,由错误动机动机动机的隐藏能力或决定是潜在的风险。研究人员已经开始将注意力集中在理解深度神经网络及其预测的解释上。在本文中,我们根据47篇论文的研究提供了可解释生物识别技术的当前状态,并全面讨论了该领域的发展方向。
translated by 谷歌翻译
Neural-symbolic computing (NeSy), which pursues the integration of the symbolic and statistical paradigms of cognition, has been an active research area of Artificial Intelligence (AI) for many years. As NeSy shows promise of reconciling the advantages of reasoning and interpretability of symbolic representation and robust learning in neural networks, it may serve as a catalyst for the next generation of AI. In the present paper, we provide a systematic overview of the important and recent developments of research on NeSy AI. Firstly, we introduce study history of this area, covering early work and foundations. We further discuss background concepts and identify key driving factors behind the development of NeSy. Afterward, we categorize recent landmark approaches along several main characteristics that underline this research paradigm, including neural-symbolic integration, knowledge representation, knowledge embedding, and functionality. Then, we briefly discuss the successful application of modern NeSy approaches in several domains. Finally, we identify the open problems together with potential future research directions. This survey is expected to help new researchers enter this rapidly-developing field and accelerate progress towards data-and knowledge-driven AI.
translated by 谷歌翻译