研究人员对科学发现多年来,研究人员已经实施了观察 - 假设 - 预测 - 实验循环的研究范式。然而,随着MEGA级和毫米科学研究的数据爆炸,有时候很难手动分析数据并提出新的假设来推动科学发现的周期。在本文中,我们介绍了一个可解释的AI辅助范式的科学发现。关键是使用可解释的AI(XAI)来帮助推导数据或模型解释和科学发现。我们展示了如何计算和数据密集型方法 - 以及实验和理论方法 - 可以无缝融合为科学研究。为了展示AI辅助科学发现过程,并为我们历史上一些最伟大的思想付出了尊重,我们展示了Kepler的行星运动和牛顿定律的普遍引力的定律可以通过基于Tycho的(可解释)的AI重新发现Brahe的天文观测数据,其作品在16-17世纪领先科学革命。这项工作还强调了可解释的AI(与黑匣子AI)在科学发现中的重要性,以帮助人类防止或更好地为未来可能发生的技术奇点做好准备。
translated by 谷歌翻译
我们概述了新兴机会和挑战,以提高AI对科学发现的效用。AI为行业的独特目标与AI科学的目标创造了识别模式中的识别模式与来自数据的发现模式之间的紧张。如果我们解决了与域驱动的科学模型和数据驱动的AI学习机之间的“弥补差距”相关的根本挑战,那么我们预计这些AI模型可以改变假说发电,科学发现和科学过程本身。
translated by 谷歌翻译
过去十年已经看到人工智能(AI)的显着进展,这导致了用于解决各种问题的算法。然而,通过增加模型复杂性并采用缺乏透明度的黑匣子AI模型来满足这种成功。为了响应这种需求,已经提出了说明的AI(Xai)以使AI更透明,从而提高关键结构域中的AI。虽然有几个关于Xai主题的Xai主题的评论,但在Xai中发现了挑战和潜在的研究方向,这些挑战和研究方向被分散。因此,本研究为Xai组织的挑战和未来的研究方向提出了系统的挑战和未来研究方向:(1)基于机器学习生命周期的Xai挑战和研究方向,基于机器的挑战和研究方向阶段:设计,开发和部署。我们认为,我们的META调查通过为XAI地区的未来探索指导提供了XAI文学。
translated by 谷歌翻译
长期以来,科学家一直旨在发现有意义的公式,以准确描述实验数据。一种常见的方法是使用域知识手动创建自然现象的数学模型,然后将这些模型拟合到数据。相比之下,机器学习算法在消耗大量数据的同时可以自动化准确的数据驱动模型的构建。在文献中探讨了对学习模型的功能形式(例如,非负)的逻辑约束的问题。但是,寻找与一般背景知识一致的模型是一个开放的问题。我们开发了一种将逻辑推理与符号回归相结合的方法,从而实现了自然现象模型的原则推导。我们演示了这些概念,用于开普勒的第三个行星运动定律,爱因斯坦的相对论时间稀释定律以及兰穆尔的吸附理论,在每种情况下都会将实验数据与背景理论自动连接起来。我们表明,使用形式的逻辑推理将正确的公式与一组合理公式区分开时,可以从几个数据点发现法律,这些公式在数据上具有相似的错误。推理与机器学习的结合提供了对自然现象的关键方面的可概括见解。我们设想,这种组合将使能够发现基本科学定律,并认为我们的工作是自动化科学方法的关键第一步。
translated by 谷歌翻译
可解释的人工智能和可解释的机器学习是重要性越来越重要的研究领域。然而,潜在的概念仍然难以捉摸,并且缺乏普遍商定的定义。虽然社会科学最近的灵感已经重新分为人类受助人的需求和期望的工作,但该领域仍然错过了具体的概念化。通过审查人类解释性的哲学和社会基础,我们采取措施来解决这一挑战,然后我们转化为技术领域。特别是,我们仔细审查了算法黑匣子的概念,并通过解释过程确定的理解频谱并扩展了背景知识。这种方法允许我们将可解释性(逻辑)推理定义为在某些背景知识下解释的透明洞察(进入黑匣子)的解释 - 这是一个从事在Admoleis中理解的过程。然后,我们采用这种概念化来重新审视透明度和预测权力之间的争议权差异,以及对安特 - 人穴和后宫后解释者的影响,以及可解释性发挥的公平和问责制。我们还讨论机器学习工作流程的组件,可能需要可解释性,从以人为本的可解释性建立一系列思想,重点介绍声明,对比陈述和解释过程。我们的讨论调整并补充目前的研究,以帮助更好地导航开放问题 - 而不是试图解决任何个人问题 - 从而为实现的地面讨论和解释的人工智能和可解释的机器学习的未来进展奠定了坚实的基础。我们结束了我们的研究结果,重新审视了实现所需的算法透明度水平所需的人以人为本的解释过程。
translated by 谷歌翻译
人工智能(AI)和机器学习(ML)在网络安全挑战中的应用已在行业和学术界的吸引力,部分原因是对关键系统(例如云基础架构和政府机构)的广泛恶意软件攻击。入侵检测系统(IDS)使用某些形式的AI,由于能够以高预测准确性处理大量数据,因此获得了广泛的采用。这些系统托管在组织网络安全操作中心(CSOC)中,作为一种防御工具,可监视和检测恶意网络流,否则会影响机密性,完整性和可用性(CIA)。 CSOC分析师依靠这些系统来决定检测到的威胁。但是,使用深度学习(DL)技术设计的IDS通常被视为黑匣子模型,并且没有为其预测提供理由。这为CSOC分析师造成了障碍,因为他们无法根据模型的预测改善决策。解决此问题的一种解决方案是设计可解释的ID(X-IDS)。这项调查回顾了可解释的AI(XAI)的最先进的ID,目前的挑战,并讨论了这些挑战如何涉及X-ID的设计。特别是,我们全面讨论了黑匣子和白盒方法。我们还在这些方法之间的性能和产生解释的能力方面提出了权衡。此外,我们提出了一种通用体系结构,该建筑认为人类在循环中,该架构可以用作设计X-ID时的指南。研究建议是从三个关键观点提出的:需要定义ID的解释性,需要为各种利益相关者量身定制的解释以及设计指标来评估解释的需求。
translated by 谷歌翻译
In the last years many accurate decision support systems have been constructed as black boxes, that is as systems that hide their internal logic to the user. This lack of explanation constitutes both a practical and an ethical issue. The literature reports many approaches aimed at overcoming this crucial weakness sometimes at the cost of scarifying accuracy for interpretability. The applications in which black box decision systems can be used are various, and each approach is typically developed to provide a solution for a specific problem and, as a consequence, delineating explicitly or implicitly its own definition of interpretability and explanation. The aim of this paper is to provide a classification of the main problems addressed in the literature with respect to the notion of explanation and the type of black box system. Given a problem definition, a black box type, and a desired explanation this survey should help the researcher to find the proposals more useful for his own work. The proposed classification of approaches to open black box models should also be useful for putting the many research open questions in perspective.
translated by 谷歌翻译
虽然数据驱动的材料科学和化学方法采用了令人兴奋的,早期的阶段,实现了机器学习模型的真正潜力,以实现科学发现,它们必须具有超出纯粹预测力的品质。模型的预测和内在工作应由人类专家提供一定程度的解释性,允许识别潜在的模型问题或限制,建立对模型预测的信任和揭示可能导致科学洞察力的意外相关性。在这项工作中,我们总结了对材料科学和化学的可解释性和解释性技术的应用,并讨论了这些技术如何改善科学研究的结果。我们讨论了材料科学中可解释机器学习的各种挑战,更广泛地在科学环境中。特别是,我们强调通过纯粹解释机器学习模型和模型解释的不确定性估计的不确定估计来强调推断因果关系或达到泛化的风险。最后,我们在其他领域展示了一些可能会使物质科学和化学问题的可解释性的令人兴奋的发展。
translated by 谷歌翻译
与此同时,在可解释的人工智能(XAI)的研究领域中,已经开发了各种术语,动机,方法和评估标准。随着XAI方法的数量大大增长,研究人员以及从业者以及从业者需要一种方法:掌握主题的广度,比较方法,并根据特定用例所需的特征选择正确的XAI方法语境。在文献中,可以找到许多不同细节水平和深度水平的XAI方法分类。虽然他们经常具有不同的焦点,但它们也表现出许多重叠点。本文统一了这些努力,并提供了XAI方法的分类,这是关于目前研究中存在的概念的概念。在结构化文献分析和元研究中,我们识别并审查了XAI方法,指标和方法特征的50多个最引用和最新的调查。总结在调查调查中,我们将文章的术语和概念合并为统一的结构化分类。其中的单一概念总计超过50个不同的选择示例方法,我们相应地分类。分类学可以为初学者,研究人员和从业者提供服务作为XAI方法特征和方面的参考和广泛概述。因此,它提供了针对有针对性的,用例导向的基础和上下文敏感的未来研究。
translated by 谷歌翻译
背景信息:在过去几年中,机器学习(ML)一直是许多创新的核心。然而,包括在所谓的“安全关键”系统中,例如汽车或航空的系统已经被证明是非常具有挑战性的,因为ML的范式转变为ML带来完全改变传统认证方法。目的:本文旨在阐明与ML为基础的安全关键系统认证有关的挑战,以及文献中提出的解决方案,以解决它们,回答问题的问题如何证明基于机器学习的安全关键系统?'方法:我们开展2015年至2020年至2020年之间发布的研究论文的系统文献综述(SLR),涵盖了与ML系统认证有关的主题。总共确定了217篇论文涵盖了主题,被认为是ML认证的主要支柱:鲁棒性,不确定性,解释性,验证,安全强化学习和直接认证。我们分析了每个子场的主要趋势和问题,并提取了提取的论文的总结。结果:单反结果突出了社区对该主题的热情,以及在数据集和模型类型方面缺乏多样性。它还强调需要进一步发展学术界和行业之间的联系,以加深域名研究。最后,它还说明了必须在上面提到的主要支柱之间建立连接的必要性,这些主要柱主要主要研究。结论:我们强调了目前部署的努力,以实现ML基于ML的软件系统,并讨论了一些未来的研究方向。
translated by 谷歌翻译
Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.
translated by 谷歌翻译
随着全球人口越来越多的人口驱动世界各地的快速城市化,有很大的需要蓄意审议值得生活的未来。特别是,随着现代智能城市拥抱越来越多的数据驱动的人工智能服务,值得记住技术可以促进繁荣,福祉,城市居住能力或社会正义,而是只有当它具有正确的模拟补充时(例如竭尽全力,成熟机构,负责任治理);这些智能城市的最终目标是促进和提高人类福利和社会繁荣。研究人员表明,各种技术商业模式和特征实际上可以有助于极端主义,极化,错误信息和互联网成瘾等社会问题。鉴于这些观察,解决了确保了诸如未来城市技术基岩的安全,安全和可解释性的哲学和道德问题,以为未来城市的技术基岩具有至关重要的。在全球范围内,有能够更加人性化和以人为本的技术。在本文中,我们分析和探索了在人以人为本的应用中成功部署AI的安全,鲁棒性,可解释性和道德(数据和算法)挑战的关键挑战,特别强调这些概念/挑战的融合。我们对这些关键挑战提供了对现有文献的详细审查,并分析了这些挑战中的一个可能导致他人的挑战方式或帮助解决其他挑战。本文还建议了这些域的当前限制,陷阱和未来研究方向,以及如何填补当前的空白并导致更好的解决方案。我们认为,这种严谨的分析将为域名的未来研究提供基准。
translated by 谷歌翻译
AI系统解释性的某些方面将批判地讨论。这尤其是侧重于使每个AI系统可解释的任务的可行性。重点将涉及与高度复杂和高效的AI系统的解释性有关的困难,该系统提供了决策,其解释违背了经典的原因和效果方案。AI系统已被证明提供了不可溶的解决方案,其中回想起来的特征是巧妙(例如,alphano的第2比赛的第37页)。将详细阐述支持该概念的论据,如果由于他们不完全理解,智能系统的潜力将浪费智能系统的潜力。
translated by 谷歌翻译
Black box machine learning models are currently being used for high stakes decision-making throughout society, causing problems throughout healthcare, criminal justice, and in other domains. People have hoped that creating methods for explaining these black box models will alleviate some of these problems, but trying to explain black box models, rather than creating models that are interpretable in the first place, is likely to perpetuate bad practices and can potentially cause catastrophic harm to society. There is a way forward -it is to design models that are inherently interpretable. This manuscript clarifies the chasm between explaining black boxes and using inherently interpretable models, outlines several key reasons why explainable black boxes should be avoided in high-stakes decisions, identifies challenges to interpretable machine learning, and provides several example applications where interpretable models could potentially replace black box models in criminal justice, healthcare, and computer vision. IntroductionThere has been an increasing trend in healthcare and criminal justice to leverage machine learning (ML) for high-stakes prediction applications that deeply impact human lives. Many of the ML models are black boxes that do not explain their predictions in a way that humans can understand. The lack of transparency and accountability of predictive models can have (and has already had) severe consequences; there have been cases of people incorrectly denied parole [1], poor bail decisions leading to the release of dangerous criminals, ML-based pollution models stating that highly polluted air was safe to breathe [2], and generally poor use of limited valuable resources in criminal justice, medicine, energy reliability, finance, and in other domains [3].Rather than trying to create models that are inherently interpretable, there has been a recent explosion of work on "Explainable ML," where a second (posthoc) model is created to explain the first black box model. This is problematic. Explanations are often not reliable, and can be misleading, as we discuss below. If we instead use models that are inherently interpretable, they provide their own explanations, which are faithful to what the model actually computes.In what follows, we discuss the problems with Explainable ML, followed by the challenges in Interpretable ML. This document is mainly relevant to high-stakes decision making and troubleshooting models, which are the main two reasons one might require an interpretable or explainable model. Interpretability is a domain-specific notion [4,5,6,7], so there cannot be an all-purpose definition. Usually, however, an interpretable machine learning model is constrained in model form so that it is either useful to someone, or obeys structural knowledge of the domain, such as monotonicity [e.g., 8], causality, structural (generative) constraints, additivity [9], or physical constraints that come from domain knowledge. Interpretable mo
translated by 谷歌翻译
我们在数字世界中采取的每一步都会落后于我们行为的记录;数字足迹。研究表明,算法可以将这些数字足迹转化为精确的心理特征估计,包括人格特质,心理健康或情报。然而,AI产生这些见解的机制通常保持不透明。在本文中,我们展示了如何解释AI(XAI)可以帮助域专家和数据主体验证,问题和改进分类数字足迹的心理特征的模型。我们在来自金融交易数据的大五个人格预测(特征和方面)的范围内,详细说明了两个流行的XAI方法(规则提取和反事实解释)(n = 6,408)。首先,我们展示了全球规则提取在模型中标识的消费模式中如何阐明了最重要的人格,并讨论这些规则如何用于解释,验证和改进模型。其次,我们实施当地规则提取,以表明,由于其独特的财务行为,个人分配给个性课程,并且模型的预测信心与促进预测的特征数量之间存在积极的联系。我们的实验突出了全球和本地XAI方法的重要性。通过更好地了解预测模型如何工作,以及他们如何获得特定人的结果,Xai促进了一个世界的问责制,其中AI影响了世界各地数十亿人的生命。
translated by 谷歌翻译
为了提高模型透明度并允许用户形成训练有素的ML模型的心理模型,解释对AI和机器学习(ML)社区的兴趣越来越高。但是,解释可以超越这种方式通信作为引起用户控制的机制,因为一旦用户理解,他们就可以提供反馈。本文的目的是介绍研究概述,其中解释与交互式功能相结合,是从头开始学习新模型并编辑和调试现有模型的手段。为此,我们绘制了最先进的概念图,根据其预期目的以及它们如何构建相互作用,突出它们之间的相似性和差异来分组相关方法。我们还讨论开放研究问题并概述可能的方向,希望促使人们对这个开花研究主题进行进一步的研究。
translated by 谷歌翻译
人工智能(AI)使机器能够从人类经验中学习,适应新的输入,并执行人类的人类任务。 AI正在迅速发展,从过程自动化到认知增强任务和智能流程/数据分析的方式转换业务方式。然而,人类用户的主要挑战是理解和适当地信任AI算法和方法的结果。在本文中,为了解决这一挑战,我们研究并分析了最近在解释的人工智能(XAI)方法和工具中所做的最新工作。我们介绍了一种新颖的XAI进程,便于生产可解释的模型,同时保持高水平的学习性能。我们提出了一种基于互动的证据方法,以帮助人类用户理解和信任启用AI的算法创建的结果和输出。我们在银行域中采用典型方案进行分析客户交易。我们开发数字仪表板以促进与算法的互动结果,并讨论如何提出的XAI方法如何显着提高数据科学家对理解启用AI的算法结果的置信度。
translated by 谷歌翻译
Artificial intelligence(AI) systems based on deep neural networks (DNNs) and machine learning (ML) algorithms are increasingly used to solve critical problems in bioinformatics, biomedical informatics, and precision medicine. However, complex DNN or ML models that are unavoidably opaque and perceived as black-box methods, may not be able to explain why and how they make certain decisions. Such black-box models are difficult to comprehend not only for targeted users and decision-makers but also for AI developers. Besides, in sensitive areas like healthcare, explainability and accountability are not only desirable properties of AI but also legal requirements -- especially when AI may have significant impacts on human lives. Explainable artificial intelligence (XAI) is an emerging field that aims to mitigate the opaqueness of black-box models and make it possible to interpret how AI systems make their decisions with transparency. An interpretable ML model can explain how it makes predictions and which factors affect the model's outcomes. The majority of state-of-the-art interpretable ML methods have been developed in a domain-agnostic way and originate from computer vision, automated reasoning, or even statistics. Many of these methods cannot be directly applied to bioinformatics problems, without prior customization, extension, and domain adoption. In this paper, we discuss the importance of explainability with a focus on bioinformatics. We analyse and comprehensively overview of model-specific and model-agnostic interpretable ML methods and tools. Via several case studies covering bioimaging, cancer genomics, and biomedical text mining, we show how bioinformatics research could benefit from XAI methods and how they could help improve decision fairness.
translated by 谷歌翻译
尽管深度神经网络(DNNS)具有很大的概括和预测能力,但它们的功能不允许对其行为进行详细的解释。不透明的深度学习模型越来越多地用于在关键环境中做出重要的预测,而危险在于,它们做出和使用不能合理或合法化的预测。已经出现了几种可解释的人工智能(XAI)方法,这些方法与机器学习模型分开了,但对模型的实际功能和鲁棒性具有忠诚的缺点。结果,就具有解释能力的深度学习模型的重要性达成了广泛的协议,因此他们自己可以为为什么做出特定的预测提供答案。首先,我们通过形式化解释是什么是缺乏XAI的普遍标准的问题。我们还引入了一组公理和定义,以从数学角度阐明XAI。最后,我们提出了Greybox XAI,该框架由于使用了符号知识库(KB)而构成DNN和透明模型。我们从数据集中提取KB,并使用它来训练透明模型(即逻辑回归)。在RGB图像上训练了编码器 - 编码器架构,以产生类似于透明模型使用的KB的输出。一旦两个模型被独立训练,它们就会在组合上使用以形成可解释的预测模型。我们展示了这种新体系结构在几个数据集中如何准确且可解释的。
translated by 谷歌翻译
由于算法预测对人类的影响增加,模型解释性已成为机器学习(ML)的重要问题。解释不仅可以帮助用户了解为什么ML模型做出某些预测,还可以帮助用户了解这些预测如何更改。在本论文中,我们研究了从三个有利位置的ML模型的解释性:算法,用户和教学法,并为解释性问题贡献了一些新颖的解决方案。
translated by 谷歌翻译