我们考虑分布式SGD问题,其中主节点在$ n $工人之间分配梯度计算。通过将任务分配给所有工人,只等待$ k $最快的工人,主节点可以随着算法的发展而逐渐增加$ k $,可以权衡算法的错误。但是,这种策略被称为自适应$ k $ -sync,忽略了未使用的计算的成本和向揭示出散布行为的工人进行交流模型的成本。我们提出了一个成本效益的计划,将任务仅分配给$ k $工人,并逐渐增加$ k $。我们介绍了组合多臂匪徒模型的使用来了解哪些工人在分配梯度计算时最快。假设具有指数分布的响应时间以不同方式参数的工人,我们会以我们的策略的遗憾(即学习工人的平均响应时间花费的额外时间)提供经验和理论保证。此外,我们提出和分析适用于大量响应时间分布的策略。与自适应$ k $ -sync相比,我们的计划通过相同的计算工作和较小的下行链路通信在速度较低的情况下,误差大大降低。
translated by 谷歌翻译
我们考虑主人想要在$ n $ Workers上运行分布式随机梯度下降(SGD)算法的设置,每个算法都有一个数据子集。分布式SGD可能会遭受散乱者的影响,即导致延迟的缓慢或反应迟钝的工人。文献中研究的一种解决方案是在更新模型之前等待每次迭代的最快$ k <n $工人的响应,其中$ k $是固定的参数。 $ k $的价值的选择提供了SGD的运行时(即收敛率)与模型错误之间的权衡。为了优化误差折衷,我们研究了在整个算法的运行时,以自适应〜$ k $(即不同的$ k $)调查分布式SGD。我们首先设计了一种自适应策略,用于改变$ k $,该策略根据我们得出的墙壁通行时间的函数,基于上限的上限来优化这种权衡。然后,我们建议并实施一种基于统计启发式的自适应分布式SGD的算法。我们的结果表明,与非自适应实现相比,分布式SGD的自适应版本可以在更少的时间内达到较低的误差值。此外,结果还表明,自适应版本是沟通效率的,其中主人与工人之间所需的通信量小于非自适应版本的沟通量。
translated by 谷歌翻译
我们通过可共享的手臂设置概括了多武器的多臂土匪(MP-MAB)问题,其中几场比赛可以共享同一臂。此外,每个可共享的组都有有限的奖励能力和“每载”奖励分配,这两者都是学习者所不知道的。可共享臂的奖励取决于负载,这是“每载”奖励乘以拉动手臂的戏剧数量或当比赛数量超过容量限制时的奖励能力。当“按负载”奖励遵循高斯分布时,我们证明了样本复杂性的下限,从负载依赖的奖励中学习容量,也遗憾的是这个新的MP-MAB问题的下限。我们设计了一个容量估计器,其样品复杂性上限在奖励手段和能力方面与下限匹配。我们还提出了一种在线学习算法来解决该问题并证明其遗憾的上限。这个遗憾的上界的第一任期与遗憾的下限相同,其第二和第三个术语显然也对应于下边界。广泛的实验验证了我们算法的性能以及其在5G和4G基站选择中的增长。
translated by 谷歌翻译
本文介绍了信息性多臂强盗(IMAB)模型,在每个回合中,玩家选择手臂,观察符号,并以符号的自我信息形式获得未观察到的奖励。因此,手臂的预期奖励是产生其符号的源质量函数的香农熵。玩家的目标是最大程度地提高与武器的熵值相关的预期奖励。在假设字母大小是已知的假设下,为IMAB模型提出了两种基于UCB的算法,该算法考虑了插件熵估计器的偏差。第一种算法在熵估计中乐观地纠正了偏置项。第二算法依赖于数据依赖性置信区间,该置信区间适应具有较小熵值的源。性能保证是通过上限为每种算法的预期遗憾提供的。此外,在Bernoulli案例中,将这些算法的渐近行为与伪遗憾的Lai-Robbins的下限进行了比较。此外,在假设\ textit {cract}字母大小的假设下是未知的,而播放器仅知道其上方的宽度上限,提出了一种基于UCB的算法,在其中,玩家的目的是减少由该算法造成的遗憾。未知的字母尺寸在有限的时间方面。数字结果说明了论文中介绍的算法的预期遗憾。
translated by 谷歌翻译
富达匪徒问题是$ k $的武器问题的变体,其中每个臂的奖励通过提供额外收益的富达奖励来增强,这取决于播放器如何对该臂进行“忠诚”在过去。我们提出了两种忠诚的模型。在忠诚点模型中,额外奖励的数量取决于手臂之前播放的次数。在订阅模型中,额外的奖励取决于手臂的连续绘制的当前数量。我们考虑随机和对抗问题。由于单臂策略在随机问题中并不总是最佳,因此对抗性环境中遗憾的概念需要仔细调整。我们介绍了三个可能的遗憾和调查,这可以是偏执的偏执。我们详细介绍了增加,减少和优惠券的特殊情况(玩家在手臂的每辆M $播放后获得额外的奖励)保真奖励。对于不一定享受载体遗憾的模型,我们提供了最糟糕的下限。对于那些展示Sublinear遗憾的模型,我们提供算法并绑定他们的遗憾。
translated by 谷歌翻译
我们研究汤普森采样(TS)算法的遗憾,指数为家庭土匪,其中奖励分配来自一个一维指数式家庭,该家庭涵盖了许多常见的奖励分布,包括伯努利,高斯,伽玛,伽玛,指数等。我们建议汤普森采样算法,称为expts,它使用新颖的采样分布来避免估计最佳臂。我们为expts提供了严格的遗憾分析,同时产生有限的遗憾和渐近遗憾。特别是,对于带指数级家庭奖励的$ k $臂匪徒,expts of horizo​​n $ t $ sub-ucb(对于有限的时间遗憾的是问题依赖的有限时间标准) $ \ sqrt {\ log k} $,并且对于指数家庭奖励,渐近最佳。此外,我们通过在Expts中使用的采样分配外添加一个贪婪的剥削步骤,提出$^+$,以避免过度估计亚最佳武器。 expts $^+$是随时随地的强盗算法,可用于指数级的家庭奖励分布同时实现最小值和渐近最优性。我们的证明技术在概念上很简单,可以轻松地应用于用特定奖励分布分析标准的汤普森抽样。
translated by 谷歌翻译
我们研究固定预算设置中线性匪徒中最佳手臂识别的问题。通过利用G-Optimal设计的属性并将其纳入ARM分配规则,我们设计了一种无参数算法,基于最佳设计的基于设计的线性最佳臂识别(OD-Linbai)。我们提供了OD-Linbai的失败概率的理论分析。 OD-Linbai的性能并非所有最优差距,而是取决于顶部$ d $臂的差距,其中$ d $是线性匪徒实例的有效维度。补充,我们为此问题提供了一个Minimax下限。上限和下限表明,OD-Linbai是最佳的最佳选择,直到指数中的恒定乘法因素,这是对现有方法的显着改进(例如,贝耶斯加普,和平,线性化和GSE),并解决了确定确定该问题的问题。在固定预算设置中学习最好的手臂的困难。最后,数值实验表明,对各种真实和合成数据集的现有算法进行了相当大的经验改进。
translated by 谷歌翻译
我们考虑了一种有可能无限的武器的随机强盗问题。我们为最佳武器和$ \ delta $的比例写入$ p ^ * $,以获得最佳和次优臂之间的最小含义 - 均值差距。我们在累积遗憾设置中表征了最佳学习率,以及在问题参数$ t $(预算),$ p ^ * $和$ \ delta $的最佳臂识别环境中。为了最大限度地减少累积遗憾,我们提供了订单$ \ OMEGA(\ log(t)/(p ^ * \ delta))$的下限和UCB样式算法,其匹配上限为一个因子$ \ log(1 / \ delta)$。我们的算法需要$ p ^ * $来校准其参数,我们证明了这种知识是必要的,因为在这个设置中调整到$ p ^ * $以来,因此是不可能的。为了获得最佳武器识别,我们还提供了订单$ \ Omega(\ exp(-ct \ delta ^ 2 p ^))的较低限制,以上输出次优臂的概率,其中$ c> 0 $是一个绝对常数。我们还提供了一个消除算法,其上限匹配下限到指数中的订单$ \ log(t)$倍数,并且不需要$ p ^ * $或$ \ delta $ as参数。我们的结果直接适用于竞争$ j $ -th最佳手臂的三个相关问题,识别$ \ epsilon $良好的手臂,并找到一个平均值大于已知订单的大分的手臂。
translated by 谷歌翻译
广泛观察到,在实际推荐系统中,诸如“点击框架”等“点击框架”的战略行为。通过这种行为的激励,我们在奖励的战略操纵下研究组合多武装匪徒(CMAB)的问题,其中每个臂可以为自己的兴趣修改发出的奖励信号。这种对抗性行为的表征是对先前研究的环境放松,例如对抗性攻击和对抗性腐败。我们提出了一种战略变体的组合UCB算法,其遗憾是最多的$ O(m \ log t + m b_ {max})$的战略操作,其中$ t $是时间范围,$ m $武器数量和$ b_ {max} $是手臂的最大预算。我们为武器预算提供了下限,以引起强盗算法的某些遗憾。在线工人选择对众包系统的大量实验,在线影响合成和实际数据集的最大化和在线建议,以鲁棒性和遗憾的界限提供了我们的理论发现,在各种操纵预算制度中。
translated by 谷歌翻译
我们考虑随机多武装强盗(MAB)问题,延迟影响了行动。在我们的环境中,过去采取的行动在随后的未来影响了ARM奖励。在现实世界中,行动的这种延迟影响是普遍的。例如,为某个社会群体中的人员偿还贷款的能力可能历史上历史上批准贷款申请的频率频率。如果银行将贷款申请拒绝拒绝弱势群体,则可以创建反馈循环,进一步损害该群体中获取贷款的机会。在本文中,我们制定了在多武装匪徒的背景下的行动延迟和长期影响。由于在学习期间,我们将强盗设置概括为对这种“偏置”的依赖性进行编码。目标是随着时间的推移最大化收集的公用事业,同时考虑到历史行动延迟影响所产生的动态。我们提出了一种算法,实现了$ \ tilde {\ mathcal {o}}的遗憾,并显示$ \ omega(kt ^ {2/3})$的匹配遗憾下限,其中$ k $是武器数量,$ t $是学习地平线。我们的结果通过添加技术来补充强盗文献,以处理具有长期影响的行动,并对设计公平算法有影响。
translated by 谷歌翻译
在本文中,我们研究了汤普森采样(TS)方法的应用到随机组合多臂匪徒(CMAB)框架中。当所有基本臂的结果分布都是独立的,并获得$ o(m \ log k _ {\ max} \ log t / \ delta_时,我们首先分析一般CMAB模型的标准TS算法。 {\ min})$,其中$ m $是基本武器的数量,$ k _ {\ max} $是最大的超级臂的大小,$ t $是时间范围,而$ \ delta _ {\ min} $是最佳解决方案的预期奖励与任何非最佳解决方案之间的最小差距。这种遗憾的上限比$ o(m(\ log k _ {\ max})^2 \ log t / \ delta _ {\ min})$更好。此外,我们的新颖分析技术可以帮助收紧其他基于UCB的政策(例如ESC)的遗憾界限,因为我们改善了计算累积遗憾的方法。然后,我们考虑Matroid Bandit设置(CMAB模型的特殊类别),在这里我们可以删除跨武器的独立性假设,并实现与下限匹配的遗憾上限。除了遗憾的上限外,我们还指出,一个人不能直接替换确切的离线甲骨文(将离线问题实例的参数作为输入,并在此实例下输出确切的最佳操作),用TS算法中的近似oracle替换了ts算法的近似值。甚至经典的mAb问题。最后,我们使用一些实验来显示TS遗憾与其他现有算法之间的比较,实验结果表明TS优于现有基准。
translated by 谷歌翻译
在本文中,我们研究了半发布反馈下的随机组合多武装强盗问题。虽然在算法上完成了很多工作,但优化线性的预期奖励以及一些一般奖励功能,我们研究了一个问题的变种,其中目标是风险感知。更具体地说,我们考虑最大化条件价值(CVAR)的问题,这是一个仅考虑最坏情况奖励的风险措施。我们提出了新的算法,最大化了从组合匪盗的超级臂上获得的奖励的CVAR,用于两个高斯和有界手臂奖励的两种情况。我们进一步分析了这些算法并提供了遗憾的界限。我们认为,我们的结果在风险感知案例中提供了对组合半强盗问题的第一个理论见解。
translated by 谷歌翻译
我们考虑使用正常奖励分布的固定预算最佳武器识别问题。在此问题中,预报员将获得$ K $臂(或治疗)和$ t $时间步骤。预报员试图通过使用算法进行的自适应实验来找到最大的均值,以最大的均值定义。该算法的性能是通过简单的遗憾(即估计的最佳臂的质量)来衡量的。常见的简单遗憾可能是指数级至$ t $的,而贝叶斯简单的遗憾在多项式上很小至$ t $。本文表明,贝叶斯的最佳算法使贝叶斯简单的遗憾最小化,并不会对某些参数产生指数的简单遗憾,这一发现与许多结果形成了鲜明的对比,表明贝叶斯和频繁的算法在固定采样制度的上下文中的渐近等效性。虽然贝叶斯最佳算法是用递归方程式来描述的,而递归方程实际上是不可能准确地计算的,但我们通过引入一个称为预期的Bellman改进的关键数量来建立进一步分析的基础。
translated by 谷歌翻译
动态治疗方案(DTRS)是个性化的,适应性的,多阶段的治疗计划,可将治疗决策适应个人的初始特征,并在随后的每个阶段中的中级结果和特征,在前阶段受到决策的影响。例子包括对糖尿病,癌症和抑郁症等慢性病的个性化一线和二线治疗,这些治疗适应患者对一线治疗,疾病进展和个人特征的反应。尽管现有文献主要集中于估算离线数据(例如从依次随机试验)中的最佳DTR,但我们研究了以在线方式开发最佳DTR的问题,在线与每个人的互动都会影响我们的累积奖励和我们的数据收集,以供我们的数据收集。未来的学习。我们将其称为DTR匪徒问题。我们提出了一种新颖的算法,通过仔细平衡探索和剥削,可以保证当过渡和奖励模型是线性时,可以实现最佳的遗憾。我们证明了我们的算法及其在合成实验和使用现实世界中对重大抑郁症的适应性治疗的案例研究中的好处。
translated by 谷歌翻译
我们考虑在多武装匪徒问题中拜耳最佳武器识别。假设先前的某些连续性条件,我们表征了贝叶斯简单遗憾的速度。与贝叶斯遗憾的不同(Lai,1987),贝叶斯简单遗憾的主要因素来自最佳和次优臂之间的差距小于$ \ sqrt {\ frac {\ log t} {t}}$。我们提出了一种简单且易于计算的算法,其前导因子与下限达到恒定因子;仿真结果支持我们的理论发现。
translated by 谷歌翻译
我们考虑使用$ K $臂的随机匪徒问题,每一个都与$ [m,m] $范围内支持的有限分布相关。我们不认为$ [m,m] $是已知的范围,并表明学习此范围有成本。确实,出现了与分销相关和无分配后悔界限之间的新权衡,这阻止了同时实现典型的$ \ ln t $和$ \ sqrt {t} $ bunds。例如,仅当与分布相关的遗憾界限至少属于$ \ sqrt {t} $的顺序时,才能实现$ \ sqrt {t} $}无分布遗憾。我们展示了一项策略,以实现新的权衡表明的遗憾。
translated by 谷歌翻译
We consider distributed learning in the presence of slow and unresponsive worker nodes, referred to as stragglers. In order to mitigate the effect of stragglers, gradient coding redundantly assigns partial computations to the worker such that the overall result can be recovered from only the non-straggling workers. Gradient codes are designed to tolerate a fixed number of stragglers. Since the number of stragglers in practice is random and unknown a priori, tolerating a fixed number of stragglers can yield a sub-optimal computation load and can result in higher latency. We propose a gradient coding scheme that can tolerate a flexible number of stragglers by carefully concatenating gradient codes for different straggler tolerance. By proper task scheduling and small additional signaling, our scheme adapts the computation load of the workers to the actual number of stragglers. We analyze the latency of our proposed scheme and show that it has a significantly lower latency than gradient codes.
translated by 谷歌翻译
我们考虑激励探索:一种多臂匪徒的版本,其中武器的选择由自私者控制,而算法只能发布建议。该算法控制信息流,信息不对称可以激励代理探索。先前的工作达到了最佳的遗憾率,直到乘法因素,这些因素根据贝叶斯先验而变得很大,并在武器数量上成倍规模扩展。采样每只手臂的一个更基本的问题一旦遇到了类似的因素。我们专注于激励措施的价格:出于激励兼容的目的,绩效的损失,广泛解释为。我们证明,如果用足够多的数据点初始化,则标准的匪徒汤普森采样是激励兼容的。因此,当收集这些数据点时,由于激励措施的绩效损失仅限于初始回合。这个问题主要降低到样本复杂性的问题:需要多少个回合?我们解决了这个问题,提供了匹配的上限和下限,并在各种推论中实例化。通常,最佳样品复杂性在“信念强度”中的武器数量和指数中是多项式。
translated by 谷歌翻译
积极的学习方法在减少学习所需的样本数量方面表现出了巨大的希望。随着自动化学习系统被采用到实时的现实世界决策管道中,越来越重要的是,这种算法的设计考虑到了安全性。在这项工作中,我们研究了在互动环境中学习最佳安全决定的复杂性。我们将这个问题减少到约束的线性匪徒问题,我们的目标是找到满足某些(未知)安全限制的最佳手臂。我们提出了一种基于自适应的实验性设计算法,在显示ARM的难度与次优的难度之间,我们表现出了有效的交易。据我们所知,我们的结果是具有安全限制的线性匪徒最佳武器识别。实际上,我们证明了这种方法在合成和现实世界数据集上的表现很好。
translated by 谷歌翻译
在线学习通常需要探索以最大程度地提高长期奖励,但这是以短期“遗憾”为代价的。我们研究如何在多个小组之间分担这种探索成本。例如,在临床试验环境中,分配了亚最佳治疗的患者有效地产生了勘探成本。当患者根据种族或年龄与自然群体相关联时,自然要问任何单一群体所承担的探索成本是否“公平”。如此有动力,我们介绍了“分组”的强盗模型。我们利用公理讨价还价的理论,尤其是纳什议价解决方案,以形式化可能构成跨群体勘探成本的公平分裂的方式。一方面,我们表明,任何遗憾的政策都引起了最不公平的结果:此类政策将在可能的情况下传递最“处于弱势”的群体。更具建设性的方式,我们得出了最佳公平且同时享受“公平价格”的政策。我们通过对华法林剂量的上下文匪徒进行案例研究来说明我们的算法框架的相对优点,我们关注多个种族和年龄段的探索成本。
translated by 谷歌翻译