我们考虑主人想要在$ n $ Workers上运行分布式随机梯度下降(SGD)算法的设置,每个算法都有一个数据子集。分布式SGD可能会遭受散乱者的影响,即导致延迟的缓慢或反应迟钝的工人。文献中研究的一种解决方案是在更新模型之前等待每次迭代的最快$ k <n $工人的响应,其中$ k $是固定的参数。 $ k $的价值的选择提供了SGD的运行时(即收敛率)与模型错误之间的权衡。为了优化误差折衷,我们研究了在整个算法的运行时,以自适应〜$ k $(即不同的$ k $)调查分布式SGD。我们首先设计了一种自适应策略,用于改变$ k $,该策略根据我们得出的墙壁通行时间的函数,基于上限的上限来优化这种权衡。然后,我们建议并实施一种基于统计启发式的自适应分布式SGD的算法。我们的结果表明,与非自适应实现相比,分布式SGD的自适应版本可以在更少的时间内达到较低的误差值。此外,结果还表明,自适应版本是沟通效率的,其中主人与工人之间所需的通信量小于非自适应版本的沟通量。
translated by 谷歌翻译
我们考虑分布式SGD问题,其中主节点在$ n $工人之间分配梯度计算。通过将任务分配给所有工人,只等待$ k $最快的工人,主节点可以随着算法的发展而逐渐增加$ k $,可以权衡算法的错误。但是,这种策略被称为自适应$ k $ -sync,忽略了未使用的计算的成本和向揭示出散布行为的工人进行交流模型的成本。我们提出了一个成本效益的计划,将任务仅分配给$ k $工人,并逐渐增加$ k $。我们介绍了组合多臂匪徒模型的使用来了解哪些工人在分配梯度计算时最快。假设具有指数分布的响应时间以不同方式参数的工人,我们会以我们的策略的遗憾(即学习工人的平均响应时间花费的额外时间)提供经验和理论保证。此外,我们提出和分析适用于大量响应时间分布的策略。与自适应$ k $ -sync相比,我们的计划通过相同的计算工作和较小的下行链路通信在速度较低的情况下,误差大大降低。
translated by 谷歌翻译
分布式机器学习实现可扩展性和计算卸载,但需要大量的通信。因此,分布式学习设置中的沟通效率是一个重要的考虑因素,尤其是当通信是无线且采用电池驱动设备时。在本文中,我们开发了一种基于审查的重球(CHB)方法,用于在服务器工作者体系结构中分布式学习。除非其本地梯度与先前传播的梯度完全不同,否则每个工人的自我审查员。 HB学习问题的显着实际优势是众所周知的,但是尚未解决降低通信的问题。 CHB充分利用HB平滑来消除报告的微小变化,并证明达到了与经典HB方法相当的线性收敛速率,以平滑和强烈凸出目标函数。 CHB的收敛保证在理论上是合理的,对于凸和非凸案。此外,我们证明,在某些情况下,至少可以消除所有通信的一半,而不会对收敛率产生任何影响。广泛的数值结果验证了CHB在合成和真实数据集(凸,非凸和非不同情况)上的通信效率。鉴于目标准确性,与现有算法相比,CHB可以显着减少通信数量,从而实现相同的精度而不减慢优化过程。
translated by 谷歌翻译
Emerging technologies and applications including Internet of Things (IoT), social networking, and crowd-sourcing generate large amounts of data at the network edge. Machine learning models are often built from the collected data, to enable the detection, classification, and prediction of future events. Due to bandwidth, storage, and privacy concerns, it is often impractical to send all the data to a centralized location. In this paper, we consider the problem of learning model parameters from data distributed across multiple edge nodes, without sending raw data to a centralized place. Our focus is on a generic class of machine learning models that are trained using gradientdescent based approaches. We analyze the convergence bound of distributed gradient descent from a theoretical point of view, based on which we propose a control algorithm that determines the best trade-off between local update and global parameter aggregation to minimize the loss function under a given resource budget. The performance of the proposed algorithm is evaluated via extensive experiments with real datasets, both on a networked prototype system and in a larger-scale simulated environment. The experimentation results show that our proposed approach performs near to the optimum with various machine learning models and different data distributions.
translated by 谷歌翻译
壁钟收敛时间和通信负载是参数服务器设置中随机梯度下降(SGD)的分布式实现的关键性能度量。通信 - 自适应分布式ADAM(CADA)已被提议通过自适应选择减少沟通负荷的方式。 CADA在存在陷阱器的壁时钟收敛时间方面进行性能退化。本文提出了一种名为基于分组的CADA(G-CADA)的小说方案,该方案保留了CADA的优势在减少通信负荷时,同时提高了工人额外储存成本的稳健性。 G-CADA将工人分配到分配相同数据分片的工人组。组在每次迭代时自适应地安排组,并且服务器仅等待每个所选组中最快的工作者。我们提供分析和实验结果,以便在其他基准方案中详细说明G-CADA的壁钟时间和通信负载和计算负荷的显着增益。
translated by 谷歌翻译
在过去的几年中,各种通信压缩技术已经出现为一个不可或缺的工具,有助于缓解分布式学习中的通信瓶颈。然而,尽管{\ em偏见}压缩机经常在实践中显示出卓越的性能,但与更多的研究和理解的{\ EM无偏见}压缩机相比,非常少见。在这项工作中,我们研究了三类偏置压缩操作员,其中两个是新的,并且它们在施加到(随机)梯度下降和分布(随机)梯度下降时的性能。我们首次展示偏置压缩机可以在单个节点和分布式设置中导致线性收敛速率。我们证明了具有错误反馈机制的分布式压缩SGD方法,享受ergodic速率$ \ mathcal {o} \ left(\ delta l \ exp [ - \ frac {\ mu k} {\ delta l}] + \ frac {(c + \ delta d)} {k \ mu} \右)$,其中$ \ delta \ ge1 $是一个压缩参数,它在应用更多压缩时增长,$ l $和$ \ mu $是平滑性和强凸常数,$ C $捕获随机渐变噪声(如果在每个节点上计算完整渐变,则$ C = 0 $如果在每个节点上计算),则$ D $以最佳($ d = 0 $ for over参数化模型)捕获渐变的方差)。此外,通过对若干合成和经验的通信梯度分布的理论研究,我们阐明了为什么和通过多少偏置压缩机优于其无偏的变体。最后,我们提出了几种具有有希望理论担保和实际表现的新型偏置压缩机。
translated by 谷歌翻译
我们考虑了分布式随机优化问题,其中$ n $代理想要最大程度地减少代理本地函数总和给出的全局函数,并专注于当代理的局部函数在非i.i.i.d上定义时,专注于异质设置。数据集。我们研究本地SGD方法,在该方法中,代理执行许多局部随机梯度步骤,并偶尔与中央节点进行通信以改善其本地优化任务。我们分析了本地步骤对局部SGD的收敛速率和通信复杂性的影响。特别是,我们允许在$ i $ th的通信回合($ h_i $)期间允许在所有通信回合中进行固定数量的本地步骤。我们的主要贡献是将本地SGD的收敛速率表征为$ \ {h_i \} _ {i = 1}^r $在强烈凸,convex和nonconvex local函数下的函数,其中$ r $是沟通总数。基于此特征,我们在序列$ \ {h_i \} _ {i = 1}^r $上提供足够的条件,使得本地SGD可以相对于工人数量实现线性加速。此外,我们提出了一种新的沟通策略,将本地步骤提高,优于现有的沟通策略,以突出局部功能。另一方面,对于凸和非凸局局功能,我们认为固定的本地步骤是本地SGD的最佳通信策略,并恢复了最新的收敛速率结果。最后,我们通过广泛的数值实验证明我们的理论结果是合理的。
translated by 谷歌翻译
我们介绍了一个框架 - Artemis-,以解决分布式或联合设置中的学习问题,并具有通信约束和设备部分参与。几位工人(随机抽样)使用中央服务器执行优化过程来汇总其计算。为了减轻通信成本,Artemis允许在两个方向上(从工人到服务器,相反)将发送的信息与内存机制相结合。它改进了仅考虑单向压缩(对服务器)的现有算法,或在压缩操作员上使用非常强大的假设,并且通常不考虑设备的部分参与。我们在非I.I.D中的随机梯度(仅在最佳点界定的噪声方差)提供了快速的收敛速率(线性最高到阈值)。设置,突出显示内存对单向和双向压缩的影响,分析Polyak-Ruppert平均。我们在分布中使用收敛性,以获得渐近方差的下限,该方差突出了实际的压缩极限。我们提出了两种方法,以解决设备部分参与的具有挑战性的案例,并提供实验结果以证明我们的分析有效性。
translated by 谷歌翻译
我们考虑在培训深度学习模型的通信约束下分布式优化。我们提出了一种新的算法,其参数更新依赖于两个力量:常规渐变步骤,以及当前最佳性能的工人(领导者)决定的纠正方向。我们的方法以多种方式与参数平均方案EASGD不同:(i)我们的客观制定与原始优化问题相比,我们的客观制定不会改变静止点的位置; (ii)我们避免通过将彼此不同局部最小值下降的本地工人拉动的融合减速(即其参数的平均值); (iii)我们的设计更新破坏了对称性的诅咒(被困在对称非凸景观中的透过透过透过次优溶液中的现象); (iv)我们的方法更加沟通高效,因为它仅广播领导者而不是所有工人的参数。我们提供了对所提出的算法的批量版本的理论分析,我们称之为领导者梯度下降(LGD)及其随机变体(LSGD)。最后,我们实现了算法的异步版本,并将其扩展到多领导者设置,我们组成的工人组,每个人都由自己的本地领导者(组中最佳表现者)表示,并使用纠正措施更新每个工作人员方向由两个有吸引力的力量组成:一个到当地,一个到全球领导者(所有工人中最好的表演者)。多引导设置与当前的硬件架构良好对齐,其中形成组的本地工人位于单个计算节点内,不同的组对应于不同的节点。对于培训卷积神经网络,我们经验证明了我们的方法对最先进的基线比较。
translated by 谷歌翻译
最近,随机梯度下降(SGD)及其变体已成为机器学习(ML)问题大规模优化的主要方法。已经提出了各种策略来调整步骤尺寸,从自适应步骤大小到启发式方法,以更改每次迭代中的步骤大小。此外,动力已被广泛用于ML任务以加速训练过程。然而,我们对它们的理论理解存在差距。在这项工作中,我们开始通过为一些启发式优化方法提供正式保证并提出改进的算法来缩小这一差距。首先,我们分析了凸面和非凸口设置的Adagrad(延迟Adagrad)步骤大小的广义版本,这表明这些步骤尺寸允许算法自动适应随机梯度的噪声水平。我们首次显示延迟Adagrad的足够条件,以确保梯度几乎融合到零。此外,我们对延迟的Adagrad及其在非凸面设置中的动量变体进行了高概率分析。其次,我们用指数级和余弦的步骤分析了SGD,在经验上取得了成功,但缺乏理论支持。我们在平滑和非凸的设置中为它们提供了最初的收敛保证,有或没有polyak-{\ l} ojasiewicz(pl)条件。我们还显示了它们在PL条件下适应噪声的良好特性。第三,我们研究动量方法的最后迭代。我们证明了SGD的最后一个迭代的凸设置中的第一个下限,并以恒定的动量。此外,我们研究了一类跟随基于领先的领导者的动量算法,并随着动量和收缩的更新而增加。我们表明,他们的最后一个迭代具有最佳的收敛性,用于无约束的凸随机优化问题。
translated by 谷歌翻译
Mini-batch stochastic gradient descent (SGD) is state of the art in large scale distributed training. The scheme can reach a linear speedup with respect to the number of workers, but this is rarely seen in practice as the scheme often suffers from large network delays and bandwidth limits. To overcome this communication bottleneck recent works propose to reduce the communication frequency. An algorithm of this type is local SGD that runs SGD independently in parallel on different workers and averages the sequences only once in a while. This scheme shows promising results in practice, but eluded thorough theoretical analysis.We prove concise convergence rates for local SGD on convex problems and show that it converges at the same rate as mini-batch SGD in terms of number of evaluated gradients, that is, the scheme achieves linear speedup in the number of workers and mini-batch size. The number of communication rounds can be reduced up to a factor of T 1/2 -where T denotes the number of total steps-compared to mini-batch SGD. This also holds for asynchronous implementations.Local SGD can also be used for large scale training of deep learning models. The results shown here aim serving as a guideline to further explore the theoretical and practical aspects of local SGD in these applications.
translated by 谷歌翻译
Federated learning is a distributed framework according to which a model is trained over a set of devices, while keeping data localized. This framework faces several systemsoriented challenges which include (i) communication bottleneck since a large number of devices upload their local updates to a parameter server, and (ii) scalability as the federated network consists of millions of devices. Due to these systems challenges as well as issues related to statistical heterogeneity of data and privacy concerns, designing a provably efficient federated learning method is of significant importance yet it remains challenging. In this paper, we present FedPAQ, a communication-efficient Federated Learning method with Periodic Averaging and Quantization. FedPAQ relies on three key features: (1) periodic averaging where models are updated locally at devices and only periodically averaged at the server; (2) partial device participation where only a fraction of devices participate in each round of the training; and (3) quantized messagepassing where the edge nodes quantize their updates before uploading to the parameter server. These features address the communications and scalability challenges in federated learning. We also show that FedPAQ achieves near-optimal theoretical guarantees for strongly convex and non-convex loss functions and empirically demonstrate the communication-computation tradeoff provided by our method.
translated by 谷歌翻译
我们开发了一种新方法来解决中央服务器中分布式学习问题中的通信约束。我们提出和分析了一种执行双向压缩的新算法,并仅使用uplink(从本地工人到中央服务器)压缩达到与算法相同的收敛速率。为了获得此改进,我们设计了MCM,一种算法,使下行链路压缩仅影响本地模型,而整体模型则保留。结果,与以前的工作相反,本地服务器上的梯度是在干扰模型上计算的。因此,融合证明更具挑战性,需要精确控制这种扰动。为了确保它,MCM还将模型压缩与存储机制相结合。该分析打开了新的门,例如纳入依赖工人的随机模型和部分参与。
translated by 谷歌翻译
为了提高分布式学习的训练速度,近年来见证了人们对开发同步和异步分布式随机方差减少优化方法的极大兴趣。但是,所有现有的同步和异步分布式训练算法都遭受了收敛速度或实施复杂性的各种局限性。这激发了我们提出一种称为\ algname(\ ul {s} emi-as \ ul {yn}的算法} ent \ ul {s} earch),它利用方差减少框架的特殊结构来克服同步和异步分布式学习算法的局限性,同时保留其显着特征。我们考虑分布式和共享内存体系结构下的\ algname的两个实现。我们表明我们的\ algname算法具有\(o(\ sqrt {n} \ epsilon^{ - 2}( - 2}(\ delta+1)+n)\)\)和\(o(\ sqrt {n} {n} 2}(\ delta+1)d+n)\)用于实现\(\ epsilon \)的计算复杂性 - 分布式和共享内存体系结构分别在非convex学习中的固定点,其中\(n \)表示培训样本的总数和\(\ delta \)表示工人的最大延迟。此外,我们通过建立二次强烈凸和非convex优化的算法稳定性界限来研究\ algname的概括性能。我们进一步进行广泛的数值实验来验证我们的理论发现
translated by 谷歌翻译
我们在限制下研究了一阶优化算法,即使用每个维度的$ r $ bits预算进行量化下降方向,其中$ r \ in(0,\ infty)$。我们提出了具有收敛速率的计算有效优化算法,与信息理论性能匹配:(i):(i)具有访问精确梯度甲骨文的平稳且强烈的符合目标,以及(ii)一般凸面和非平滑目标访问嘈杂的亚级别甲骨文。这些算法的关键是一种多项式复杂源编码方案,它在量化它之前将矢量嵌入随机子空间中。这些嵌入使得具有很高的概率,它们沿着转换空间的任何规范方向的投影很小。结果,量化这些嵌入,然后对原始空间进行逆变换产生一种源编码方法,具有最佳的覆盖效率,同时仅利用每个维度的$ r $ bits。我们的算法保证了位预算$ r $的任意值的最佳性,其中包括次线性预算制度($ r <1 $),以及高预算制度($ r \ geq 1 $),虽然需要$ o \ left(n^2 \右)$乘法,其中$ n $是尺寸。我们还提出了使用Hadamard子空间对这种编码方案的有效放松扩展以显着提高梯度稀疏方案的性能。数值模拟验证我们的理论主张。我们的实现可在https://github.com/rajarshisaha95/distoptconstrocncomm上获得。
translated by 谷歌翻译
In large-scale distributed learning, security issues have become increasingly important. Particularly in a decentralized environment, some computing units may behave abnormally, or even exhibit Byzantine failures-arbitrary and potentially adversarial behavior. In this paper, we develop distributed learning algorithms that are provably robust against such failures, with a focus on achieving optimal statistical performance. A main result of this work is a sharp analysis of two robust distributed gradient descent algorithms based on median and trimmed mean operations, respectively. We prove statistical error rates for three kinds of population loss functions: strongly convex, nonstrongly convex, and smooth non-convex. In particular, these algorithms are shown to achieve order-optimal statistical error rates for strongly convex losses. To achieve better communication efficiency, we further propose a median-based distributed algorithm that is provably robust, and uses only one communication round. For strongly convex quadratic loss, we show that this algorithm achieves the same optimal error rate as the robust distributed gradient descent algorithms.
translated by 谷歌翻译
我们研究了在$ n $工人上的分布式培训的异步随机梯度下降算法,随着时间的推移,计算和通信频率变化。在此算法中,工人按照自己的步调并行计算随机梯度,并在没有任何同步的情况下将其返回服务器。该算法的现有收敛速率对于非凸平的光滑目标取决于最大梯度延迟$ \ tau _ {\ max} $,并表明$ \ epsilon $ stationary点在$ \ mathcal {o} \!\左后达到(\ sigma^2 \ epsilon^{ - 2}+ \ tau _ {\ max} \ epsilon^{ - 1} \ right)$ iterations,其中$ \ sigma $表示随机梯度的方差。在这项工作(i)中,我们获得了$ \ Mathcal {o} \!\ left(\ sigma^2 \ epsilon^{ - 2}+ sqrt {\ tau _ {\ max} \ max} \ tau_ {avg} {avg} } \ epsilon^{ - 1} \ right)$,没有任何更改的算法,其中$ \ tau_ {avg} $是平均延迟,可以大大小于$ \ tau _ {\ max} $。我们还提供(ii)一个简单的延迟自适应学习率方案,在该方案下,异步SGD的收敛速率为$ \ Mathcal {o} \!\ left(\ sigma^2 \ epsilon^{ - 2} { - 2}+ \ tau_ {-2 avg} \ epsilon^{ - 1} \ right)$,并且不需要任何额外的高参数调整或额外的通信。我们的结果首次显示异步SGD总是比迷你批次SGD快。此外,(iii)我们考虑了由联邦学习应用激发的异质功能的情况,并通过证明与先前的作品相比对最大延迟的依赖性较弱,并提高收敛率。特别是,我们表明,收敛率的异质性项仅受每个工人内平均延迟的影响。
translated by 谷歌翻译
分布式学习的主要重点之一是沟通效率,因为每一轮训练的模型聚集可能包括数百万到数十亿个参数。已经提出了几种模型压缩方法,例如梯度量化和稀疏方法,以提高模型聚合的通信效率。但是,对于给定梯度估计器的给定扭曲的信息理论的最低通信成本仍然未知。在本文中,我们研究了从率延伸的角度研究分布式学习中模型聚集的基本限制。通过将模型聚合作为矢量高斯首席执行官问题,我们得出了模型聚合问题的速率区域和总成绩 - 距离函数,这揭示了在特定梯度失真上限处的最小通信速率。我们还根据现实世界数据集的梯度统计数据,分析了每次迭代和总通信成本的通信成本和总通信成本。发现通过利用工人节点之间的相关性来获得沟通增益,对于符号来说是显着的,并且梯度估计器的高扭曲可以实现梯度压缩中的较低总通信成本。
translated by 谷歌翻译
由于培训数据集的大小爆炸,分布式学习近年来受到了日益增长的兴趣。其中一个主要瓶颈是中央服务器和本地工人之间的沟通成本。虽然已经证明错误反馈压缩以通过随机梯度下降(SGD)降低通信成本,但在培训大规模机器学习方面广泛用于培训的通信有效的适应性梯度方法楷模。在本文中,我们提出了一种新的通信 - 压缩AMSGRAD,用于分布式非透明的优化问题,可提供有效的效率。我们所提出的分布式学习框架具有有效的渐变压缩策略和工人侧模型更新设计。我们证明所提出的通信有效的分布式自适应梯度方法会聚到具有与随机非凸化优化设置中的未压缩的vanilla amsgrad相同的迭代复杂度的一阶静止点。关于各种基准备份我们理论的实验。
translated by 谷歌翻译
我们考虑随着延迟梯度的随机优化,在每次步骤$ $,该算法使用步骤$ t-d_t $的陈旧随机梯度进行更新,从而为某些任意延迟$ d_t $。此设置摘要异步分布式优化,其中中央服务器接收由工作人员计算的渐变更新。这些机器可以体验可能随时间变化而变化的计算和通信负载。在一般的非凸平滑优化设置中,我们提供了一种简单且高效的算法,需要$ o(\ sigma ^ 2 / \ epsilon ^ 4 + \ tau / epsilon ^ 2)$步骤查找$ \ epsilon $ - 静止点$ x $,其中$ \ tau $是\ emph {平均}延迟$ \ smash {\ frac {1} {t} \ sum_ {t = 1} ^ t d_t} $和$ \ sigma ^ 2 $是随机梯度的方差。这改善了以前的工作,这表明随机梯度体面可以实现相同的速率,而是相对于\ emph {maximal}延迟$ \ max_ {t} d_t $,这可以显着大于平均延迟,特别是在异构分布式系统中。我们的实验证明了我们算法在延迟分布歪斜或重尾的情况下的效力和稳健性。
translated by 谷歌翻译