用于求解微分方程的几种神经网络方法采用前馈神经网络采用试用解决方案。存在不同的方法来纳入结​​构中的试验解决方案,例如可以将它们直接包括在成本函数中。在相应的神经网络中使用,试验解决方案定义所谓的神经形式。这种神经形式代表一般,灵活的工具,通过该工具可以解决各种微分方程。在本文中,我们考虑时间依赖的初始值问题,需要充分设置神经表单框架。现在在文献中呈现的神经形式可以被认为是第一阶多项式。在这项工作中,我们建议延长神经形式的多项式顺序。新型搭配型结构包括几个前馈神经网络,每个馈电是每个订单的。此外,我们提出计算域的碎片到子域名。神经形式求解在每个子域上,而接口网格点重叠以便在整个碎片上提供初始值。我们在实验中说明了凸起神经形式的搭配和域碎片的组合允许在具有高精度和可靠性的大型域上解决初始值问题。
translated by 谷歌翻译
前馈神经网络提供了一种用于求解微分方程的有希望的方法。然而,近似的可靠性和准确性仍然代表了当前文献中没有完全解决的细微问题。计算方法一般高度依赖于各种计算参数以及优化方法的选择,这一点必须与成本函数的结构一起看。本文的目的是迈出解决这些公开问题的一步。为此,我们在这里研究了一种简单但基本的常见常见微分方程建模阻尼系统的解决方案。我们考虑通过神经形式求解微分方程的两种计算方法。这些是定义成本函数的经典但仍然是实际的试验解决方案方法,以及最近直接建设与试验解决方案方法相关的成本函数。让我们注意到我们学习的设置可以很容易地应用,包括偏微分方程的解。通过一个非常详细的计算研究,我们表明可以识别用于参数和方法的优选选择。我们还照亮了神经网络模拟中可观察到的一些有趣的效果。总的来说,我们通过展示通过神经网络方法获得可靠和准确的结果来实现现场的当前文献。通过这样做,我们说明了仔细选择计算设置的重要性。
translated by 谷歌翻译
在神经形式上建立具有神经网络的微分方程的经典方法,其中可以使用具有透明域的离散方式直接构造成本函数。利用用于时间依赖性微分方程的神经形式,可以应用最近开发的域碎片方法。也就是说,域可以被分成几个子域,在该子域中解决了优化问题。在用于求解微分方程的经典自适应数值方法中,可以分别改进或分解域的网格以及域,以提高精度。还可以调整近似精度的程度。希望将这种重要和成功的基于神经网络解决方案的策略转移。在目前的工作中,我们提出了一种新的自适应神经方法,以满足这种旨在解决时间依赖性问题。为此,每个子域尺寸减小,直到优化被解析为预定义的训练准确性。另外,虽然所采用的神经网络是默认小的,但是也可以以自适应方式调整神经元的数量。我们引入条件以自动确认解决方案可靠性并在必要时进行计算参数。我们为三个仔细选择的示例初始值问题提供了结果,并说明了该方法的重要属性。
translated by 谷歌翻译
在本文中,开发了用于求解具有delta功能奇异源的椭圆方程的浅丽兹型神经网络。目前的工作中有三个新颖的功能。即,(i)Delta函数奇异性自然删除,(ii)级别集合函数作为功能输入引入,(iii)它完全浅,仅包含一个隐藏层。我们首先介绍问题的能量功能,然后转换奇异源对沿界面的常规表面积分的贡献。以这种方式,可以自然删除三角洲函数,而无需引入传统正规化方法(例如众所周知的沉浸式边界方法)中常用的函数。然后将最初的问题重新重新审议为最小化问题。我们提出了一个带有一个隐藏层的浅丽兹型神经网络,以近似能量功能的全局最小化器。结果,通过最大程度地减少能源的离散版本的损耗函数来训练网络。此外,我们将界面的级别设置函数作为网络的功能输入,并发现它可以显着提高训练效率和准确性。我们执行一系列数值测试,以显示本方法的准确性及其在不规则域和较高维度中问题的能力。
translated by 谷歌翻译
深度学习表明了视觉识别和某些人工智能任务的成功应用。深度学习也被认为是一种强大的工具,具有近似功能的高度灵活性。在本工作中,设计具有所需属性的功能,以近似PDE的解决方案。我们的方法基于后验误差估计,其中解决了错误定位以在神经网络框架内制定误差估计器的伴随问题。开发了一种高效且易于实现的算法,以通过采用双重加权剩余方法来获得多个目标功能的后验误差估计,然后使用神经网络计算原始和伴随解决方案。本研究表明,即使具有相对较少的训练数据,这种基于数据驱动的模型的学习具有卓越的感兴趣量的近似。用数值测试实施例证实了新颖的算法发展。证明了在浅神经网络上使用深神经网络的优点,并且还呈现了收敛增强技术
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
在本文中,开发了一种新的不连续性捕获浅神经网络(DCSNN),以近似于$ d $ d $二维的分段连续功能和解决椭圆界面问题。当前网络中有三个新颖的功能。即,(i)跳跃不连续性被准确捕获,(ii)它完全浅,仅包含一个隐藏层,(iii)它完全无网格,用于求解部分微分方程。这里的关键想法是,可以将$ d $维的分段连续函数扩展到$(d+1)$ - 尺寸空间中定义的连续函数,其中增强坐标变量标记每个子域的零件。然后,我们构建一个浅神经网络来表达这一新功能。由于仅使用一个隐藏层,因此训练参数(权重和偏见)的数量与隐藏层中使用的维度和神经元线性缩放。为了解决椭圆界面问题,通过最大程度地减少由管理方程式,边界条件和接口跳跃条件组成的均方误差损失来训练网络。我们执行一系列数值测试以证明本网络的准确性。我们的DCSNN模型由于仅需要训练的参数数量中等(在所有数值示例中使用了几百个参数),因此很有效,结果表明准确性良好。与传统的基于网格的浸入界面方法(IIM)获得的结果相比,该方法专门针对椭圆界面问题而设计,我们的网络模型比IIM表现出更好的精度。我们通过解决一个六维问题来结论,以证明本网络在高维应用中的能力。
translated by 谷歌翻译
这项调查的目的是介绍对深神经网络的近似特性的解释性回顾。具体而言,我们旨在了解深神经网络如何以及为什么要优于其他经典线性和非线性近似方法。这项调查包括三章。在第1章中,我们回顾了深层网络及其组成非线性结构的关键思想和概念。我们通过在解决回归和分类问题时将其作为优化问题来形式化神经网络问题。我们简要讨论用于解决优化问题的随机梯度下降算法以及用于解决优化问题的后传播公式,并解决了与神经网络性能相关的一些问题,包括选择激活功能,成本功能,过度适应问题和正则化。在第2章中,我们将重点转移到神经网络的近似理论上。我们首先介绍多项式近似中的密度概念,尤其是研究实现连续函数的Stone-WeierStrass定理。然后,在线性近似的框架内,我们回顾了馈电网络的密度和收敛速率的一些经典结果,然后在近似Sobolev函数中进行有关深网络复杂性的最新发展。在第3章中,利用非线性近似理论,我们进一步详细介绍了深度和近似网络与其他经典非线性近似方法相比的近似优势。
translated by 谷歌翻译
在本文中,我们介绍了一种基于距离场的新方法,以确保物理知识的深神经网络中的边界条件。众所周知,满足网状紫外线和颗粒方法中的Dirichlet边界条件的挑战是众所周知的。该问题在物理信息的开发中也是相关的,用于解决部分微分方程的解。我们在人工神经网络中介绍几何意识的试验功能,以改善偏微分方程的深度学习培训。为此,我们使用来自建设性的实体几何(R函数)和广义的等级坐标(平均值潜在字段)的概念来构建$ \ phi $,对域边界的近似距离函数。要恰好施加均匀的Dirichlet边界条件,试验函数乘以\ PHI $乘以PINN近似,并且通过Transfinite插值的泛化用于先验满足的不均匀Dirichlet(必要),Neumann(自然)和Robin边界复杂几何形状的条件。在这样做时,我们消除了与搭配方法中的边界条件满意相关的建模误差,并确保以ritz方法点点到运动可视性。我们在具有仿射和弯曲边界的域上的线性和非线性边值问题的数值解。 1D中的基准问题,用于线性弹性,平面扩散和光束弯曲;考虑了泊松方程的2D,考虑了双音态方程和非线性欧克隆方程。该方法延伸到更高的尺寸,并通过在4D超立方套上解决彼此与均匀的Dirichlet边界条件求泊松问题来展示其使用。该研究提供了用于网眼分析的途径,以在没有域离散化的情况下在确切的几何图形上进行。
translated by 谷歌翻译
本文侧重于各种技术来查找替代近似方法,可以普遍用于各种CFD问题,但计算成本低,运行时低。在机器学习领域中探讨了各种技术,以衡量实现核心野心的效用。稳定的平流扩散问题已被用作测试用例,以了解方法可以提供解决方案的复杂程度。最终,该重点留在物理知识的机器学习技术上,其中求解微分方程是可能的,而无需计算数据。 i.e的普遍方法拉加里斯et.al.和M. Raissi et.al彻底探讨。普遍存在的方法无法解决占主导地位问题。提出了一种称为分布物理知识神经网络(DPINN)的物理知情方法,以解决平流的主导问题。它通过分割域并将其他基于物理的限制引入均方平方损耗条款来增加旧方法的可执行和能力。完成各种实验以探索结束与该方法结束的最终可能性。也完成了参数研究以了解方法对不同可调参数的方法。该方法经过稳定的平流 - 扩散问题和不稳定的方脉冲问题。记录非常准确的结果。极端学习机(ELM)是一种以可调谐参数成本的快速神经网络算法。在平面扩散问题上测试所提出的模型的基于ELM的变体。榆树使得复杂优化更简单,并且由于该方法是非迭代的,因此解决方案被记录在单一镜头中。基于ELM的变体似乎比简单的DPINN方法更好。在本文中,将来同时进行各种发展的范围。
translated by 谷歌翻译
我们提出了一种基于物理知识的随机投影神经网络的数值方法,用于解决常微分方程(ODES)的初始值问题(IVPS)的解决方案,重点是僵硬的问题。我们使用具有径向基函数的单个隐藏层来解决一个极端学习机,其具有宽度均匀分布的随机变量,而输入和隐藏层之间的权重的值设置为等于1。通过构造非线性代数方程的系统来获得IVPS的数值解决方案,该系统由高斯-Nythto方法通过Gauss-Newton方法解决了输出权重,以调整集成时间间隔的简单自适应方案。为了评估其性能,我们应用了四个基准僵硬IVPS解决方案的提议方法,即预热罗宾逊,梵德,罗伯和雇用问题。我们的方法与基于Dormand-Prince对的自适应跳动-Kutta方法进行比较,以及基于数值差分公式的可变步骤可变序列多步解算器,如\ texttt {ode45}和\ texttt {ode15s}所实现的MATLAB功能分别。我们表明所提出的方案产生良好的近似精度,从而优于\ texttt {ode45}和\ texttt {ode15s},尤其是在出现陡峭梯度的情况下。此外,我们的方法的计算时间与两种Matlab溶剂的计算时间用于实际目的。
translated by 谷歌翻译
我们提出了一种基于具有子域(CENN)的神经网络的保守能量方法,其中允许通过径向基函数(RBF),特定解决方案神经网络和通用神经网络构成满足没有边界惩罚的基本边界条件的可允许功能。与具有子域的强形式Pinn相比,接口处的损耗术语具有较低的阶数。所提出的方法的优点是效率更高,更准确,更小的近双达,而不是具有子域的强形式Pinn。所提出的方法的另一个优点是它可以基于可允许功能的特殊结构适用于复杂的几何形状。为了分析其性能,所提出的方法宫殿用于模拟代表性PDE,这些实施例包括强不连续性,奇异性,复杂边界,非线性和异质问题。此外,在处理异质问题时,它优于其他方法。
translated by 谷歌翻译
在这项工作中,我们分析了不同程度的不同精度和分段多项式测试函数如何影响变异物理学知情神经网络(VPINN)的收敛速率,同时解决椭圆边界边界值问题,如何影响变异物理学知情神经网络(VPINN)的收敛速率。使用依靠INF-SUP条件的Petrov-Galerkin框架,我们在精确解决方案和合适的计算神经网络的合适的高阶分段插值之间得出了一个先验误差估计。数值实验证实了理论预测并突出了INF-SUP条件的重要性。我们的结果表明,以某种方式违反直觉,对于平滑解决方案,实现高衰减率的最佳策略在选择最低多项式程度的测试功能方面,同时使用适当高精度的正交公式。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
使用深层学习方法来解决PDE是完全扩张的领域。特别是,物理知识的神经网络,其实现物理域的采样并使用惩罚偏差方程的违反违反部分微分方程的丢失函数。然而,为了解决实际应用中遇到的大规模问题并与PDE的现有数值方法竞争,重要的是设计具有良好可扩展性的平行算法。在传统领域分解方法(DDM)的静脉中,我们认为最近提出的深层DDM方法。我们展示了这种方法的扩展,依赖于使用粗糙空间校正,类似于传统DDM求解器中所做的内容。我们的研究表明,当由于每个迭代时子域之间的瞬时信息交换而增加,当子域的数量增加时,粗校正能够缓解求解器的收敛性的恶化。实验结果表明,我们的方法引起了原始的深度DDM方法的显着加速,降低了额外的计算成本。
translated by 谷歌翻译
在过去的十年中,在许多工程领域,包括自动驾驶汽车,医疗诊断和搜索引擎,甚至在艺术创作中,神经网络(NNS)已被证明是极有效的工具。确实,NN通常果断地超过传统算法。直到最近才引起重大兴趣的一个领域是使用NNS设计数值求解器,尤其是用于离散的偏微分方程。最近的几篇论文考虑使用NNS来开发多机方法,这些方法是解决离散的偏微分方程和其他稀疏矩阵问题的领先计算工具。我们扩展了这些新想法,重点关注所谓的放松操作员(也称为Smoothers),这是Multigrid算法的重要组成部分,在这种情况下尚未受到很多关注。我们探索了一种使用NNS学习带有随机系数的扩散算子的放松参数的方法,用于雅各比类型的Smoothers和4Color Gaussseidel Smoothers。后者的产量异常高效且易于使连续的放松(SOR)SmoOthors平行。此外,这项工作表明,使用两个网格方法在相对较小的网格上学习放松参数,而Gelfand的公式可以轻松实现。这些方法有效地产生了几乎最佳的参数,从而显着提高了大网格上的Multigrid算法的收敛速率。
translated by 谷歌翻译
物理信息神经网络(PINN)能够找到给定边界值问题的解决方案。我们使用有限元方法(FEM)的几个想法来增强工程问题中现有的PINN的性能。当前工作的主要贡献是促进使用主要变量的空间梯度作为分离神经网络的输出。后来,具有较高衍生物的强形式应用于主要变量的空间梯度作为物理约束。此外,该问题的所谓能量形式被应用于主要变量,作为训练的附加约束。所提出的方法仅需要一阶导数来构建物理损失函数。我们讨论了为什么通过不同模型之间的各种比较,这一点是有益的。基于配方混合的PINN和FE方法具有一些相似之处。前者利用神经网络的复杂非线性插值将PDE及其能量形式最小化及其能量形式,而后者则在元素节点借助Shape函数在元素节点上使用相同。我们专注于异质固体,以显示深学习在不同边界条件下在复杂环境中预测解决方案的能力。针对FEM的解决方案对两个原型问题的解决方案进行了检查:弹性和泊松方程(稳态扩散问题)。我们得出的结论是,通过正确设计PINN中的网络体系结构,深度学习模型有可能在没有其他来源的任何可用初始数据中解决异质域中的未知数。最后,关于Pinn和FEM的组合进行了讨论,以在未来的开发中快速准确地设计复合材料。
translated by 谷歌翻译
对应用机器学习来研究动态系统有一波兴趣。特别地,已经应用神经网络来解决运动方程,因此追踪系统的演变。与神经网络和机器学习的其他应用相反,动态系统 - 根据其潜在的对称 - 具有诸如能量,动量和角动量的不变性。传统的数值迭代方法通常违反这些保护法,在时间上传播误差,并降低方法的可预测性。我们介绍了一个汉密尔顿神经网络,用于解决控制动态系统的微分方程。这种无监督的模型是学习解决方案,可以相同地满足哈密尔顿方程,因此哈密尔顿方程式满足。一旦优化了,所提出的架构被认为是一种杂项单元,因为引入了高效的参数的解决方案。另外,通过共享网络参数并选择适当的激活函数的选择大大提高了网络的可预测性。派生错误分析,并指出数值误差取决于整体网络性能。然后采用辛结构来解决非线性振荡器的方程和混沌HENON-HENEL动态系统。在两个系统中,杂项欧拉集成商需要两个订单比HAMILTONIAN网络更多的评估点,以便在预测的相空间轨迹中获得相同的数值误差顺序。
translated by 谷歌翻译
Physics-Informed Neural Networks (PINN) are algorithms from deep learning leveraging physical laws by including partial differential equations together with a respective set of boundary and initial conditions as penalty terms into their loss function. In this work, we observe the significant role of correctly weighting the combination of multiple competitive loss functions for training PINNs effectively. To this end, we implement and evaluate different methods aiming at balancing the contributions of multiple terms of the PINNs loss function and their gradients. After reviewing of three existing loss scaling approaches (Learning Rate Annealing, GradNorm and SoftAdapt), we propose a novel self-adaptive loss balancing scheme for PINNs named \emph{ReLoBRaLo} (Relative Loss Balancing with Random Lookback). We extensively evaluate the performance of the aforementioned balancing schemes by solving both forward as well as inverse problems on three benchmark PDEs for PINNs: Burgers' equation, Kirchhoff's plate bending equation and Helmholtz's equation. The results show that ReLoBRaLo is able to consistently outperform the baseline of existing scaling methods in terms of accuracy, while also inducing significantly less computational overhead.
translated by 谷歌翻译