在本文中,开发了一种新的不连续性捕获浅神经网络(DCSNN),以近似于$ d $ d $二维的分段连续功能和解决椭圆界面问题。当前网络中有三个新颖的功能。即,(i)跳跃不连续性被准确捕获,(ii)它完全浅,仅包含一个隐藏层,(iii)它完全无网格,用于求解部分微分方程。这里的关键想法是,可以将$ d $维的分段连续函数扩展到$(d+1)$ - 尺寸空间中定义的连续函数,其中增强坐标变量标记每个子域的零件。然后,我们构建一个浅神经网络来表达这一新功能。由于仅使用一个隐藏层,因此训练参数(权重和偏见)的数量与隐藏层中使用的维度和神经元线性缩放。为了解决椭圆界面问题,通过最大程度地减少由管理方程式,边界条件和接口跳跃条件组成的均方误差损失来训练网络。我们执行一系列数值测试以证明本网络的准确性。我们的DCSNN模型由于仅需要训练的参数数量中等(在所有数值示例中使用了几百个参数),因此很有效,结果表明准确性良好。与传统的基于网格的浸入界面方法(IIM)获得的结果相比,该方法专门针对椭圆界面问题而设计,我们的网络模型比IIM表现出更好的精度。我们通过解决一个六维问题来结论,以证明本网络在高维应用中的能力。
translated by 谷歌翻译
在本文中,开发了用于求解具有delta功能奇异源的椭圆方程的浅丽兹型神经网络。目前的工作中有三个新颖的功能。即,(i)Delta函数奇异性自然删除,(ii)级别集合函数作为功能输入引入,(iii)它完全浅,仅包含一个隐藏层。我们首先介绍问题的能量功能,然后转换奇异源对沿界面的常规表面积分的贡献。以这种方式,可以自然删除三角洲函数,而无需引入传统正规化方法(例如众所周知的沉浸式边界方法)中常用的函数。然后将最初的问题重新重新审议为最小化问题。我们提出了一个带有一个隐藏层的浅丽兹型神经网络,以近似能量功能的全局最小化器。结果,通过最大程度地减少能源的离散版本的损耗函数来训练网络。此外,我们将界面的级别设置函数作为网络的功能输入,并发现它可以显着提高训练效率和准确性。我们执行一系列数值测试,以显示本方法的准确性及其在不规则域和较高维度中问题的能力。
translated by 谷歌翻译
A new and efficient neural-network and finite-difference hybrid method is developed for solving Poisson equation in a regular domain with jump discontinuities on embedded irregular interfaces. Since the solution has low regularity across the interface, when applying finite difference discretization to this problem, an additional treatment accounting for the jump discontinuities must be employed. Here, we aim to elevate such an extra effort to ease our implementation by machine learning methodology. The key idea is to decompose the solution into singular and regular parts. The neural network learning machinery incorporating the given jump conditions finds the singular solution, while the standard finite difference method is used to obtain the regular solution with associated boundary conditions. Regardless of the interface geometry, these two tasks only require supervised learning for function approximation and a fast direct solver for Poisson equation, making the hybrid method easy to implement and efficient. The two- and three-dimensional numerical results show that the present hybrid method preserves second-order accuracy for the solution and its derivatives, and it is comparable with the traditional immersed interface method in the literature. As an application, we solve the Stokes equations with singular forces to demonstrate the robustness of the present method.
translated by 谷歌翻译
深度学习表明了视觉识别和某些人工智能任务的成功应用。深度学习也被认为是一种强大的工具,具有近似功能的高度灵活性。在本工作中,设计具有所需属性的功能,以近似PDE的解决方案。我们的方法基于后验误差估计,其中解决了错误定位以在神经网络框架内制定误差估计器的伴随问题。开发了一种高效且易于实现的算法,以通过采用双重加权剩余方法来获得多个目标功能的后验误差估计,然后使用神经网络计算原始和伴随解决方案。本研究表明,即使具有相对较少的训练数据,这种基于数据驱动的模型的学习具有卓越的感兴趣量的近似。用数值测试实施例证实了新颖的算法发展。证明了在浅神经网络上使用深神经网络的优点,并且还呈现了收敛增强技术
translated by 谷歌翻译
在本文中,我们介绍了一种基于距离场的新方法,以确保物理知识的深神经网络中的边界条件。众所周知,满足网状紫外线和颗粒方法中的Dirichlet边界条件的挑战是众所周知的。该问题在物理信息的开发中也是相关的,用于解决部分微分方程的解。我们在人工神经网络中介绍几何意识的试验功能,以改善偏微分方程的深度学习培训。为此,我们使用来自建设性的实体几何(R函数)和广义的等级坐标(平均值潜在字段)的概念来构建$ \ phi $,对域边界的近似距离函数。要恰好施加均匀的Dirichlet边界条件,试验函数乘以\ PHI $乘以PINN近似,并且通过Transfinite插值的泛化用于先验满足的不均匀Dirichlet(必要),Neumann(自然)和Robin边界复杂几何形状的条件。在这样做时,我们消除了与搭配方法中的边界条件满意相关的建模误差,并确保以ritz方法点点到运动可视性。我们在具有仿射和弯曲边界的域上的线性和非线性边值问题的数值解。 1D中的基准问题,用于线性弹性,平面扩散和光束弯曲;考虑了泊松方程的2D,考虑了双音态方程和非线性欧克隆方程。该方法延伸到更高的尺寸,并通过在4D超立方套上解决彼此与均匀的Dirichlet边界条件求泊松问题来展示其使用。该研究提供了用于网眼分析的途径,以在没有域离散化的情况下在确切的几何图形上进行。
translated by 谷歌翻译
Deep learning has achieved remarkable success in diverse applications; however, its use in solving partial differential equations (PDEs) has emerged only recently. Here, we present an overview of physics-informed neural networks (PINNs), which embed a PDE into the loss of the neural network using automatic differentiation. The PINN algorithm is simple, and it can be applied to different types of PDEs, including integro-differential equations, fractional PDEs, and stochastic PDEs. Moreover, from the implementation point of view, PINNs solve inverse problems as easily as forward problems. We propose a new residual-based adaptive refinement (RAR) method to improve the training efficiency of PINNs. For pedagogical reasons, we compare the PINN algorithm to a standard finite element method. We also present a Python library for PINNs, DeepXDE, which is designed to serve both as an education tool to be used in the classroom as well as a research tool for solving problems in computational science and engineering. Specifically, DeepXDE can solve forward problems given initial and boundary conditions, as well as inverse problems given some extra measurements. DeepXDE supports complex-geometry domains based on the technique of constructive solid geometry, and enables the user code to be compact, resembling closely the mathematical formulation. We introduce the usage of DeepXDE and its customizability, and we also demonstrate the capability of PINNs and the user-friendliness of DeepXDE for five different examples. More broadly, DeepXDE contributes to the more rapid development of the emerging Scientific Machine Learning field.
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
我们提出了一种基于具有子域(CENN)的神经网络的保守能量方法,其中允许通过径向基函数(RBF),特定解决方案神经网络和通用神经网络构成满足没有边界惩罚的基本边界条件的可允许功能。与具有子域的强形式Pinn相比,接口处的损耗术语具有较低的阶数。所提出的方法的优点是效率更高,更准确,更小的近双达,而不是具有子域的强形式Pinn。所提出的方法的另一个优点是它可以基于可允许功能的特殊结构适用于复杂的几何形状。为了分析其性能,所提出的方法宫殿用于模拟代表性PDE,这些实施例包括强不连续性,奇异性,复杂边界,非线性和异质问题。此外,在处理异质问题时,它优于其他方法。
translated by 谷歌翻译
在这项工作中,我们分析了不同程度的不同精度和分段多项式测试函数如何影响变异物理学知情神经网络(VPINN)的收敛速率,同时解决椭圆边界边界值问题,如何影响变异物理学知情神经网络(VPINN)的收敛速率。使用依靠INF-SUP条件的Petrov-Galerkin框架,我们在精确解决方案和合适的计算神经网络的合适的高阶分段插值之间得出了一个先验误差估计。数值实验证实了理论预测并突出了INF-SUP条件的重要性。我们的结果表明,以某种方式违反直觉,对于平滑解决方案,实现高衰减率的最佳策略在选择最低多项式程度的测试功能方面,同时使用适当高精度的正交公式。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
部分微分方程通常用于模拟各种物理现象,例如热扩散,波传播,流体动力学,弹性,电动力学和图像处理,并且已经开发了许多分析方法或传统的数值方法并广泛用于其溶液。受深度学习对科学和工程研究的迅速影响的启发,在本文中,我们提出了一个新型的神经网络GF-NET,以无监督的方式学习绿色的线性反应扩散方程的功能。所提出的方法克服了通过使用物理信息的方法和绿色功能的对称性来查找任意域上方程函数的挑战。结果,它尤其导致了在不同边界条件和来源下解决目标方程的有效方法。我们还通过正方形,环形和L形域中的实验证明了所提出的方法的有效性。
translated by 谷歌翻译
由于应用程序可用的数据越来越多,因此需要更有能力的学习模型来进行数据处理。我们遇到的数据通常具有某些嵌入式稀疏结构。也就是说,如果它们以适当的基础表示,则它们的能量可以集中于少数基础函数。本文致力于通过深层神经网络(DNN)具有稀疏的正则化具有多个参数的非线性偏微分方程解的自适应近似。指出DNN具有固有的多尺度结构,通过使用多个参数的惩罚来有利于自适应表达功能,我们开发具有多尺度稀疏正则化(SDNN)的DNN,用于有效地表示具有一定单调的功能。然后,我们将提出的SDNN应用于汉堡方程和schr \“ odinger方程的数值解。数值示例确认提出的SDNN生成的溶液稀疏而准确。
translated by 谷歌翻译
This paper proposes Friedrichs learning as a novel deep learning methodology that can learn the weak solutions of PDEs via a minmax formulation, which transforms the PDE problem into a minimax optimization problem to identify weak solutions. The name "Friedrichs learning" is for highlighting the close relationship between our learning strategy and Friedrichs theory on symmetric systems of PDEs. The weak solution and the test function in the weak formulation are parameterized as deep neural networks in a mesh-free manner, which are alternately updated to approach the optimal solution networks approximating the weak solution and the optimal test function, respectively. Extensive numerical results indicate that our mesh-free method can provide reasonably good solutions to a wide range of PDEs defined on regular and irregular domains in various dimensions, where classical numerical methods such as finite difference methods and finite element methods may be tedious or difficult to be applied.
translated by 谷歌翻译
近年来,由于其网状柔性和计算效率,近年来,部分微分方程(PDE)的深度学习方法受到了很多关注。但是,到目前为止,大多数作品都集中在时间依赖性的非线性微分方程上。在这项工作中,我们用众所周知的物理知情神经网络分析了潜在问题,用于微分方程,边界上的约束很少(即,约束仅在几个点上)。这种分析促使我们引入了一种名为Finnet的新技术,用于通过将有限的差异纳入深度学习来解决微分方程。即使我们在训练过程中使用网格,预测阶段也不是网状的。我们通过解决各种方程式的实验来说明我们方法的有效性,这表明Finnet可以求解较低的错误率,即使Pinns不能,也可以工作。
translated by 谷歌翻译
微分方程用于多种学科,描述了物理世界的复杂行为。这些方程式的分析解决方案通常很难求解,从而限制了我们目前求解复杂微分方程的能力,并需要将复杂的数值方法近似于解决方案。训练有素的神经网络充当通用函数近似器,能够以新颖的方式求解微分方程。在这项工作中,探索了神经网络算法在数值求解微分方程方面的方法和应用,重点是不同的损失函数和生物应用。传统损失函数和训练参数的变化显示出使神经网络辅助解决方案更有效的希望,从而可以调查更复杂的方程式管理生物学原理。
translated by 谷歌翻译
本文侧重于各种技术来查找替代近似方法,可以普遍用于各种CFD问题,但计算成本低,运行时低。在机器学习领域中探讨了各种技术,以衡量实现核心野心的效用。稳定的平流扩散问题已被用作测试用例,以了解方法可以提供解决方案的复杂程度。最终,该重点留在物理知识的机器学习技术上,其中求解微分方程是可能的,而无需计算数据。 i.e的普遍方法拉加里斯et.al.和M. Raissi et.al彻底探讨。普遍存在的方法无法解决占主导地位问题。提出了一种称为分布物理知识神经网络(DPINN)的物理知情方法,以解决平流的主导问题。它通过分割域并将其他基于物理的限制引入均方平方损耗条款来增加旧方法的可执行和能力。完成各种实验以探索结束与该方法结束的最终可能性。也完成了参数研究以了解方法对不同可调参数的方法。该方法经过稳定的平流 - 扩散问题和不稳定的方脉冲问题。记录非常准确的结果。极端学习机(ELM)是一种以可调谐参数成本的快速神经网络算法。在平面扩散问题上测试所提出的模型的基于ELM的变体。榆树使得复杂优化更简单,并且由于该方法是非迭代的,因此解决方案被记录在单一镜头中。基于ELM的变体似乎比简单的DPINN方法更好。在本文中,将来同时进行各种发展的范围。
translated by 谷歌翻译
物理信息神经网络(PINN)能够找到给定边界值问题的解决方案。我们使用有限元方法(FEM)的几个想法来增强工程问题中现有的PINN的性能。当前工作的主要贡献是促进使用主要变量的空间梯度作为分离神经网络的输出。后来,具有较高衍生物的强形式应用于主要变量的空间梯度作为物理约束。此外,该问题的所谓能量形式被应用于主要变量,作为训练的附加约束。所提出的方法仅需要一阶导数来构建物理损失函数。我们讨论了为什么通过不同模型之间的各种比较,这一点是有益的。基于配方混合的PINN和FE方法具有一些相似之处。前者利用神经网络的复杂非线性插值将PDE及其能量形式最小化及其能量形式,而后者则在元素节点借助Shape函数在元素节点上使用相同。我们专注于异质固体,以显示深学习在不同边界条件下在复杂环境中预测解决方案的能力。针对FEM的解决方案对两个原型问题的解决方案进行了检查:弹性和泊松方程(稳态扩散问题)。我们得出的结论是,通过正确设计PINN中的网络体系结构,深度学习模型有可能在没有其他来源的任何可用初始数据中解决异质域中的未知数。最后,关于Pinn和FEM的组合进行了讨论,以在未来的开发中快速准确地设计复合材料。
translated by 谷歌翻译
Physics-informed neural networks (PINNs) have lately received significant attention as a representative deep learning-based technique for solving partial differential equations (PDEs). Most fully connected network-based PINNs use automatic differentiation to construct loss functions that suffer from slow convergence and difficult boundary enforcement. In addition, although convolutional neural network (CNN)-based PINNs can significantly improve training efficiency, CNNs have difficulty in dealing with irregular geometries with unstructured meshes. Therefore, we propose a novel framework based on graph neural networks (GNNs) and radial basis function finite difference (RBF-FD). We introduce GNNs into physics-informed learning to better handle irregular domains with unstructured meshes. RBF-FD is used to construct a high-precision difference format of the differential equations to guide model training. Finally, we perform numerical experiments on Poisson and wave equations on irregular domains. We illustrate the generalizability, accuracy, and efficiency of the proposed algorithms on different PDE parameters, numbers of collection points, and several types of RBFs.
translated by 谷歌翻译
我们提出了一种基于物理知识的随机投影神经网络的数值方法,用于解决常微分方程(ODES)的初始值问题(IVPS)的解决方案,重点是僵硬的问题。我们使用具有径向基函数的单个隐藏层来解决一个极端学习机,其具有宽度均匀分布的随机变量,而输入和隐藏层之间的权重的值设置为等于1。通过构造非线性代数方程的系统来获得IVPS的数值解决方案,该系统由高斯-Nythto方法通过Gauss-Newton方法解决了输出权重,以调整集成时间间隔的简单自适应方案。为了评估其性能,我们应用了四个基准僵硬IVPS解决方案的提议方法,即预热罗宾逊,梵德,罗伯和雇用问题。我们的方法与基于Dormand-Prince对的自适应跳动-Kutta方法进行比较,以及基于数值差分公式的可变步骤可变序列多步解算器,如\ texttt {ode45}和\ texttt {ode15s}所实现的MATLAB功能分别。我们表明所提出的方案产生良好的近似精度,从而优于\ texttt {ode45}和\ texttt {ode15s},尤其是在出现陡峭梯度的情况下。此外,我们的方法的计算时间与两种Matlab溶剂的计算时间用于实际目的。
translated by 谷歌翻译