近年来,由于其网状柔性和计算效率,近年来,部分微分方程(PDE)的深度学习方法受到了很多关注。但是,到目前为止,大多数作品都集中在时间依赖性的非线性微分方程上。在这项工作中,我们用众所周知的物理知情神经网络分析了潜在问题,用于微分方程,边界上的约束很少(即,约束仅在几个点上)。这种分析促使我们引入了一种名为Finnet的新技术,用于通过将有限的差异纳入深度学习来解决微分方程。即使我们在训练过程中使用网格,预测阶段也不是网状的。我们通过解决各种方程式的实验来说明我们方法的有效性,这表明Finnet可以求解较低的错误率,即使Pinns不能,也可以工作。
translated by 谷歌翻译
部分微分方程(PDE)在研究大量科学和工程问题方面发挥着至关重要的作用。数值求解的非线性和/或高维PDE通常是一个具有挑战性的任务。灵感来自传统有限差分和有限元的方法和机器学习的新兴进步,我们提出了一个名为神经PDE的序列深度学习框架,这允许通过使用双向来自动学习从现有数据的任何时间依赖于现有数据的管理规则LSTM编码器,并预测下一个时间步长数据。我们所提出的框架的一个关键特征是,神经PDE能够同时学习和模拟多尺度变量。我们通过一维PDE的一系列示例测试神经PDE到高维和非线性复杂流体模型。结果表明,神经PDE能够学习初始条件,边界条件和差分运营商,而不知道PDE系统的特定形式。在我们的实验中,神经PDE可以有效地提取20个时期训练内的动态,并产生准确的预测。此外,与在学习PDE中的传统机器学习方法不同,例如CNN和MLP,这需要用于模型精度的巨大参数,神经PDE在所有时间步骤中共享参数,从而显着降低了计算复杂性并导致快速学习算法。
translated by 谷歌翻译
Deep learning has achieved remarkable success in diverse applications; however, its use in solving partial differential equations (PDEs) has emerged only recently. Here, we present an overview of physics-informed neural networks (PINNs), which embed a PDE into the loss of the neural network using automatic differentiation. The PINN algorithm is simple, and it can be applied to different types of PDEs, including integro-differential equations, fractional PDEs, and stochastic PDEs. Moreover, from the implementation point of view, PINNs solve inverse problems as easily as forward problems. We propose a new residual-based adaptive refinement (RAR) method to improve the training efficiency of PINNs. For pedagogical reasons, we compare the PINN algorithm to a standard finite element method. We also present a Python library for PINNs, DeepXDE, which is designed to serve both as an education tool to be used in the classroom as well as a research tool for solving problems in computational science and engineering. Specifically, DeepXDE can solve forward problems given initial and boundary conditions, as well as inverse problems given some extra measurements. DeepXDE supports complex-geometry domains based on the technique of constructive solid geometry, and enables the user code to be compact, resembling closely the mathematical formulation. We introduce the usage of DeepXDE and its customizability, and we also demonstrate the capability of PINNs and the user-friendliness of DeepXDE for five different examples. More broadly, DeepXDE contributes to the more rapid development of the emerging Scientific Machine Learning field.
translated by 谷歌翻译
在本文中,开发了一种新的不连续性捕获浅神经网络(DCSNN),以近似于$ d $ d $二维的分段连续功能和解决椭圆界面问题。当前网络中有三个新颖的功能。即,(i)跳跃不连续性被准确捕获,(ii)它完全浅,仅包含一个隐藏层,(iii)它完全无网格,用于求解部分微分方程。这里的关键想法是,可以将$ d $维的分段连续函数扩展到$(d+1)$ - 尺寸空间中定义的连续函数,其中增强坐标变量标记每个子域的零件。然后,我们构建一个浅神经网络来表达这一新功能。由于仅使用一个隐藏层,因此训练参数(权重和偏见)的数量与隐藏层中使用的维度和神经元线性缩放。为了解决椭圆界面问题,通过最大程度地减少由管理方程式,边界条件和接口跳跃条件组成的均方误差损失来训练网络。我们执行一系列数值测试以证明本网络的准确性。我们的DCSNN模型由于仅需要训练的参数数量中等(在所有数值示例中使用了几百个参数),因此很有效,结果表明准确性良好。与传统的基于网格的浸入界面方法(IIM)获得的结果相比,该方法专门针对椭圆界面问题而设计,我们的网络模型比IIM表现出更好的精度。我们通过解决一个六维问题来结论,以证明本网络在高维应用中的能力。
translated by 谷歌翻译
深度学习表明了视觉识别和某些人工智能任务的成功应用。深度学习也被认为是一种强大的工具,具有近似功能的高度灵活性。在本工作中,设计具有所需属性的功能,以近似PDE的解决方案。我们的方法基于后验误差估计,其中解决了错误定位以在神经网络框架内制定误差估计器的伴随问题。开发了一种高效且易于实现的算法,以通过采用双重加权剩余方法来获得多个目标功能的后验误差估计,然后使用神经网络计算原始和伴随解决方案。本研究表明,即使具有相对较少的训练数据,这种基于数据驱动的模型的学习具有卓越的感兴趣量的近似。用数值测试实施例证实了新颖的算法发展。证明了在浅神经网络上使用深神经网络的优点,并且还呈现了收敛增强技术
translated by 谷歌翻译
在这项工作中,我们分析了不同程度的不同精度和分段多项式测试函数如何影响变异物理学知情神经网络(VPINN)的收敛速率,同时解决椭圆边界边界值问题,如何影响变异物理学知情神经网络(VPINN)的收敛速率。使用依靠INF-SUP条件的Petrov-Galerkin框架,我们在精确解决方案和合适的计算神经网络的合适的高阶分段插值之间得出了一个先验误差估计。数值实验证实了理论预测并突出了INF-SUP条件的重要性。我们的结果表明,以某种方式违反直觉,对于平滑解决方案,实现高衰减率的最佳策略在选择最低多项式程度的测试功能方面,同时使用适当高精度的正交公式。
translated by 谷歌翻译
Physics-informed neural networks (PINNs) have lately received significant attention as a representative deep learning-based technique for solving partial differential equations (PDEs). Most fully connected network-based PINNs use automatic differentiation to construct loss functions that suffer from slow convergence and difficult boundary enforcement. In addition, although convolutional neural network (CNN)-based PINNs can significantly improve training efficiency, CNNs have difficulty in dealing with irregular geometries with unstructured meshes. Therefore, we propose a novel framework based on graph neural networks (GNNs) and radial basis function finite difference (RBF-FD). We introduce GNNs into physics-informed learning to better handle irregular domains with unstructured meshes. RBF-FD is used to construct a high-precision difference format of the differential equations to guide model training. Finally, we perform numerical experiments on Poisson and wave equations on irregular domains. We illustrate the generalizability, accuracy, and efficiency of the proposed algorithms on different PDE parameters, numbers of collection points, and several types of RBFs.
translated by 谷歌翻译
High-dimensional PDEs have been a longstanding computational challenge. We propose to solve highdimensional PDEs by approximating the solution with a deep neural network which is trained to satisfy the differential operator, initial condition, and boundary conditions. Our algorithm is meshfree, which is key since meshes become infeasible in higher dimensions. Instead of forming a mesh, the neural network is trained on batches of randomly sampled time and space points. The algorithm is tested on a class of high-dimensional free boundary PDEs, which we are able to accurately solve in up to 200 dimensions. The algorithm is also tested on a high-dimensional Hamilton-Jacobi-Bellman PDE and Burgers' equation. The deep learning algorithm approximates the general solution to the Burgers' equation for a continuum of different boundary conditions and physical conditions (which can be viewed as a high-dimensional space). We call the algorithm a "Deep Galerkin Method (DGM)" since it is similar in spirit to Galerkin methods, with the solution approximated by a neural network instead of a linear combination of basis functions. In addition, we prove a theorem regarding the approximation power of neural networks for a class of quasilinear parabolic PDEs.
translated by 谷歌翻译
This paper proposes Friedrichs learning as a novel deep learning methodology that can learn the weak solutions of PDEs via a minmax formulation, which transforms the PDE problem into a minimax optimization problem to identify weak solutions. The name "Friedrichs learning" is for highlighting the close relationship between our learning strategy and Friedrichs theory on symmetric systems of PDEs. The weak solution and the test function in the weak formulation are parameterized as deep neural networks in a mesh-free manner, which are alternately updated to approach the optimal solution networks approximating the weak solution and the optimal test function, respectively. Extensive numerical results indicate that our mesh-free method can provide reasonably good solutions to a wide range of PDEs defined on regular and irregular domains in various dimensions, where classical numerical methods such as finite difference methods and finite element methods may be tedious or difficult to be applied.
translated by 谷歌翻译
已经提出了物理信息神经网络(PINN)来学习偏微分方程(PDE)的解决方案。在PINN中,感兴趣的PDE及其边界条件的残余形式被归为复合目标函数,作为软惩罚。在这里,我们表明,将目标函数制定的这种特定方式是应用于不同种类PDE的PINN方法中严重限制的来源。为了解决这些局限性,我们提出了一个基于约束优化问题公式的多功能框架,在该框架中,我们使用增强的拉格朗日方法(ALM)来限制PDE的解决方案,并具有其边界条件和任何可能可用的高保真数据。我们的方法擅长于具有多保真数据融合的转发和反问题。我们通过将其应用于涉及多维PDE的几个远期和反向问题来证明物理和相等性约束深度学习框架的功效和多功能性。您的框架与最先进的框架相比,与最先进的框架提高了幅度的提高顺序。 ART物理信息的神经网络。
translated by 谷歌翻译
在本文中,我们演示并调查了一些挑战,这些挑战阻碍了使用物理知识的神经网络解决复杂问题的方式。特别是,我们可视化受过训练的模型的损失景观,并在存在物理学的情况下对反向传播梯度进行灵敏度分析。我们的发现表明,现有的方法产生了难以导航的高度非凸损失景观。此外,高阶PDE污染了可能阻碍或防止收敛的反向传播梯度。然后,我们提出了一种新的方法,该方法绕过了高阶PDE操作员的计算并减轻反向传播梯度的污染。为此,我们降低了解决方案搜索空间的维度,并通过非平滑解决方案促进学习问题。我们的配方还提供了一种反馈机制,可帮助我们的模型适应地专注于难以学习的领域的复杂区域。然后,我们通过调整Lagrange乘数方法来提出一个无约束的二重问题。我们运用我们的方法来解决由线性和非线性PDE控制的几个具有挑战性的基准问题。
translated by 谷歌翻译
两个不混溶的流体的位移是多孔介质中流体流动的常见问题。这种问题可以作为局部微分方程(PDE)构成通常被称为Buckley-Leverett(B-L)问题。 B-L问题是一种非线性双曲守护法,众所周知,使用传统的数值方法难以解决。在这里,我们使用物理信息的神经网络(Pinns)使用非凸版通量函数来解决前向双曲线B-L问题。本文的贡献是双重的。首先,我们通过将Oleinik熵条件嵌入神经网络残差来提出一种Pinn方法来解决双曲线B-L问题。我们不使用扩散术语(人工粘度)在残留损失中,但我们依靠PDE的强形式。其次,我们使用ADAM优化器与基于残留的自适应细化(RAR)算法,实现不加权的超低损耗。我们的解决方案方法可以精确地捕获冲击前并产生精确的整体解决方案。我们报告了一个2 x 10-2的L2验证误差和1x 10-6的L2损耗。所提出的方法不需要任何额外的正则化或加权损失以获得这种准确的解决方案。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
本文介绍了一种基于Krnet(ADDA-KR)的自适应深度近似策略,用于求解稳态Fokker-Planck(F-P)方程。 F-P方程通常是高维度和在无限域上定义的,这限制了基于传统网格的数值方法的应用。通过Knothe-Rosenblatt重新排列,我们的新提出的基于流的生成模型称为KrNet,提供了一种概率密度函数的家族,以作为Fokker-Planck方程的有效解决方案候选者,这与传统的计算方法较弱的维度依赖性较弱并且可以有效地估计一般的高维密度函数。为了获得用于F-P方程的近似的有效随机搭配点,我们开发了一种自适应采样过程,其中使用每次迭代的近似密度函数来迭代地生成样本。我们介绍了ADDA-KR的一般框架,验证了其准确性并通过数值实验展示了其效率。
translated by 谷歌翻译
物理信息神经网络(PINN)能够找到给定边界值问题的解决方案。我们使用有限元方法(FEM)的几个想法来增强工程问题中现有的PINN的性能。当前工作的主要贡献是促进使用主要变量的空间梯度作为分离神经网络的输出。后来,具有较高衍生物的强形式应用于主要变量的空间梯度作为物理约束。此外,该问题的所谓能量形式被应用于主要变量,作为训练的附加约束。所提出的方法仅需要一阶导数来构建物理损失函数。我们讨论了为什么通过不同模型之间的各种比较,这一点是有益的。基于配方混合的PINN和FE方法具有一些相似之处。前者利用神经网络的复杂非线性插值将PDE及其能量形式最小化及其能量形式,而后者则在元素节点借助Shape函数在元素节点上使用相同。我们专注于异质固体,以显示深学习在不同边界条件下在复杂环境中预测解决方案的能力。针对FEM的解决方案对两个原型问题的解决方案进行了检查:弹性和泊松方程(稳态扩散问题)。我们得出的结论是,通过正确设计PINN中的网络体系结构,深度学习模型有可能在没有其他来源的任何可用初始数据中解决异质域中的未知数。最后,关于Pinn和FEM的组合进行了讨论,以在未来的开发中快速准确地设计复合材料。
translated by 谷歌翻译
概率密度演化的推导提供了对许多随机系统及其性能的行为的宝贵洞察力。但是,对于大多数实时应用程序,对概率密度演变的数值确定是一项艰巨的任务。后者是由于所需的时间和空间离散方案引起的,这些方案使大多数计算解决方案过于效率和不切实际。在这方面,有效的计算替代模型的开发至关重要。关于物理受限网络的最新研究表明,可以通过编码对深神经网络的物理洞察力来实现合适的替代物。为此,目前的工作介绍了Deeppdem,它利用物理信息网络的概念通过提出深度学习方法来解决概率密度的演变。 Deeppdem了解随机结构的一般密度演化方程(GDEE)。这种方法为无网格学习方法铺平了道路,该方法可以通过以前的模拟数据解决密度演化问题。此外,它还可以作为优化方案或实时应用程序中任何其他时空点的溶液的有效替代物。为了证明所提出的框架的潜在适用性,研究了两个具有不同激活功能的网络体系结构以及两个优化器。关于三个不同问题的数值实施验证了所提出方法的准确性和功效。
translated by 谷歌翻译
本文涉及以下重要的研究问题。传统上,神经网络采用与线性操作员连接的非线性激活功能,以近似给定的物理现象。它们与激活功能的级联“填充空间”,并调整它们的系数以近似物理现象。我们声称,更好地“填充空间”,具有由异常分析所用的平滑高阶B样条基础功能的线性组合,并利用神经网络来调整线性组合的系数。换句话说,评估使用神经网络用于近似B样条曲线基本功能的系数的可能性以及直接逼近解决方案。 Maziar Raissi等人提出了用神经网络解决微分方程。 2017年通过引入物理信息的神经网络(PINN),自然地将底层物理法编码为先前信息。使用函数的系数近似值用作输入利用神经网络的众所周知的能力是通用函数近似器。实质上,在Pinn方法中,网络近似于给定点的给定场的值。我们呈现一种替代方法,其中水平量被近似为平滑B样条基函数的线性组合,并且神经网络近似于B样条的系数。该研究将DNN的结果与近似B样条函数的线性组合系数进行比较,DNN直接逼近溶液。我们表明,当近似平滑的物理领域时,我们的方法更便宜,更准确。
translated by 谷歌翻译
由于应用程序可用的数据越来越多,因此需要更有能力的学习模型来进行数据处理。我们遇到的数据通常具有某些嵌入式稀疏结构。也就是说,如果它们以适当的基础表示,则它们的能量可以集中于少数基础函数。本文致力于通过深层神经网络(DNN)具有稀疏的正则化具有多个参数的非线性偏微分方程解的自适应近似。指出DNN具有固有的多尺度结构,通过使用多个参数的惩罚来有利于自适应表达功能,我们开发具有多尺度稀疏正则化(SDNN)的DNN,用于有效地表示具有一定单调的功能。然后,我们将提出的SDNN应用于汉堡方程和schr \“ odinger方程的数值解。数值示例确认提出的SDNN生成的溶液稀疏而准确。
translated by 谷歌翻译
机器学习方法最近已用于求解微分方程和动态系统。这些方法已发展为一个新型的研究领域,称为科学机器学习,其中深层神经网络和统计学习等技术应用于应用数学的经典问题。由于神经网络提供了近似能力,因此在求解各种偏微分方程(PDE)时,通过机器学习和优化方法通过机器学习和优化方法实现了明显的性能。在本文中,我们开发了一种新颖的数值算法,该算法结合了机器学习和人工智能来解决PDE。特别是,我们基于Legendre-Galerkin神经网络提出了一种无监督的机器学习算法,以找到与不同类型PDE的解决方案的准确近似值。提出的神经网络应用于一般的1D和2D PDE,以及具有边界层行为的奇异扰动PDE。
translated by 谷歌翻译
We propose, Monte Carlo Nonlocal physics-informed neural networks (MC-Nonlocal-PINNs), which is a generalization of MC-fPINNs in \cite{guo2022monte}, for solving general nonlocal models such as integral equations and nonlocal PDEs. Similar as in MC-fPINNs, our MC-Nonlocal-PINNs handle the nonlocal operators in a Monte Carlo way, resulting in a very stable approach for high dimensional problems. We present a variety of test problems, including high dimensional Volterra type integral equations, hypersingular integral equations and nonlocal PDEs, to demonstrate the effectiveness of our approach.
translated by 谷歌翻译