对应用机器学习来研究动态系统有一波兴趣。特别地,已经应用神经网络来解决运动方程,因此追踪系统的演变。与神经网络和机器学习的其他应用相反,动态系统 - 根据其潜在的对称 - 具有诸如能量,动量和角动量的不变性。传统的数值迭代方法通常违反这些保护法,在时间上传播误差,并降低方法的可预测性。我们介绍了一个汉密尔顿神经网络,用于解决控制动态系统的微分方程。这种无监督的模型是学习解决方案,可以相同地满足哈密尔顿方程,因此哈密尔顿方程式满足。一旦优化了,所提出的架构被认为是一种杂项单元,因为引入了高效的参数的解决方案。另外,通过共享网络参数并选择适当的激活函数的选择大大提高了网络的可预测性。派生错误分析,并指出数值误差取决于整体网络性能。然后采用辛结构来解决非线性振荡器的方程和混沌HENON-HENEL动态系统。在两个系统中,杂项欧拉集成商需要两个订单比HAMILTONIAN网络更多的评估点,以便在预测的相空间轨迹中获得相同的数值误差顺序。
translated by 谷歌翻译
动态系统参见在物理,生物学,化学等自然科学中广泛使用,以及电路分析,计算流体动力学和控制等工程学科。对于简单的系统,可以通过应用基本物理法来导出管理动态的微分方程。然而,对于更复杂的系统,这种方法变得非常困难。数据驱动建模是一种替代范式,可以使用真实系统的观察来了解系统的动态的近似值。近年来,对数据驱动的建模技术的兴趣增加,特别是神经网络已被证明提供了解决广泛任务的有效框架。本文提供了使用神经网络构建动态系统模型的不同方式的调查。除了基础概述外,我们还审查了相关的文献,概述了这些建模范式必须克服的数值模拟中最重要的挑战。根据审查的文献和确定的挑战,我们提供了关于有前途的研究领域的讨论。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
最近,与神经网络的时间相关微分方程的解决方案最近引起了很多关注。核心思想是学习控制解决方案从数据演变的法律,该数据可能会被随机噪声污染。但是,与其他机器学习应用相比,通常对手头的系统了解很多。例如,对于许多动态系统,诸如能量或(角度)动量之类的物理量是完全保守的。因此,神经网络必须从数据中学习这些保护定律,并且仅由于有限的训练时间和随机噪声而被满足。在本文中,我们提出了一种替代方法,该方法使用Noether的定理将保护定律本质地纳入神经网络的体系结构。我们证明,这可以更好地预测三个模型系统:在三维牛顿引力潜能中非偏见粒子的运动,Schwarzschild指标中庞大的相对论粒子的运动和两个相互作用的粒子在四个相互作用的粒子系统中的运动方面。
translated by 谷歌翻译
基于哈密顿配方的混合机器学习最近已成功证明了简单的机械系统。在这项工作中,我们在简单的质量弹簧系统和更复杂,更现实的系统上强调方法,具有多个内部和外部端口,包括具有多个连接储罐的系统。我们量化各种条件下的性能,并表明施加不同的假设会极大地影响性能,突出该方法的优势和局限性。我们证明,哈米尔顿港神经网络可以扩展到具有州依赖性端口的更高维度。我们考虑学习具有已知和未知外部端口的系统。哈米尔顿港的公式允许检测偏差,并在删除偏差时仍然提供有效的模型。最后,我们提出了一种对称的高级整合方案,以改善稀疏和嘈杂数据的训练。
translated by 谷歌翻译
Physics-informed neural networks have been widely applied to learn general parametric solutions of differential equations. Here, we propose a neural network to discover parametric eigenvalue and eigenfunction surfaces of quantum systems. We apply our method to solve the hydrogen molecular ion. This is an ab-initio deep learning method that solves the Schrodinger equation with the Coulomb potential yielding realistic wavefunctions that include a cusp at the ion positions. The neural solutions are continuous and differentiable functions of the interatomic distance and their derivatives are analytically calculated by applying automatic differentiation. Such a parametric and analytical form of the solutions is useful for further calculations such as the determination of force fields.
translated by 谷歌翻译
In this thesis, we consider two simple but typical control problems and apply deep reinforcement learning to them, i.e., to cool and control a particle which is subject to continuous position measurement in a one-dimensional quadratic potential or in a quartic potential. We compare the performance of reinforcement learning control and conventional control strategies on the two problems, and show that the reinforcement learning achieves a performance comparable to the optimal control for the quadratic case, and outperforms conventional control strategies for the quartic case for which the optimal control strategy is unknown. To our knowledge, this is the first time deep reinforcement learning is applied to quantum control problems in continuous real space. Our research demonstrates that deep reinforcement learning can be used to control a stochastic quantum system in real space effectively as a measurement-feedback closed-loop controller, and our research also shows the ability of AI to discover new control strategies and properties of the quantum systems that are not well understood, and we can gain insights into these problems by learning from the AI, which opens up a new regime for scientific research.
translated by 谷歌翻译
我们介绍了一种引力波形反演策略,用于发现二元黑洞(BBH)系统的机械模型。我们表明,只需要单一的时间序列(可能嘈杂)波形数据来构造BBH系统的运动方程。从前馈神经网络参数化的一类通用微分方程开始,我们的策略涉及构建合理的机械模型的空间和该空间内的物理信息的受限优化,以最小化波形误差。我们将我们的方法应用于各种BBH系统,包括偏心和非偏心轨道的极端和可比的质量比系统。我们展示所得到的微分方程适用于时间持续时间长于训练间隔的时间,并且相对论效应,例如临床预防,辐射反应和轨道插入,被自动占。这里概述的方法提供了研究二元黑洞系统动态的新的数据驱动方法。
translated by 谷歌翻译
从经典动力学系统到量子力学的许多领域,在许多领域的进步核心,有效,准确地求解微分方程。人们对使用物理知识的神经网络(PINN)来解决此类问题,这引起了人们的兴趣,因为它们比传统的数值方法提供了许多好处。尽管它们在求解微分方程方面的潜在好处,但仍在探索转移学习。在这项研究中,我们提出了转移学习PINN的一般框架,该框架对普通和部分微分方程的线性系统进行了单次推断。这意味着,可以在不重新培训整个网络的情况下即时获得许多未知微分方程的方法。我们通过解决了几个现实世界中的问题,例如一阶线性普通方程,泊松方程以及时间依赖时间依赖的schrodinger复合物配合物部分差分方程来证明拟议的深度学习方法的功效。
translated by 谷歌翻译
我们研究了科学计算的数值算法的元学习,它将一般算法结构的数学驱动,手工设计与特定的任务类的数据驱动的适应相结合。这表示从数值分析中的经典方法的偏离,这通常不具有这种基于学习的自适应。作为一个案例研究,我们开发了一种机器学习方法,基于Runge-Kutta(RK)Integrator架构,自动学习用于常用方程式(ODES)形式的初始值问题的有效求解器。通过组合神经网络近似和元学习,我们表明我们可以获得针对目标差分方程系的高阶集成商,而无需手头计算积分器系数。此外,我们证明,在某些情况下,我们可以获得古典RK方法的卓越性能。这可以归因于通过该方法识别和利用ode系列的某些属性。总的来说,这项工作展示了基于学习的基于学习的方法,用于设计差分方程的数值解的算法,一种方法可以容易地扩展到其他数值任务。
translated by 谷歌翻译
我们在强烈混合(混乱)方面基于能源持续的哈密顿动力学进行了优化的新框架,并在分析和数值上建立其关键特性。该原型是对出生式动力学的离散化,取决于目标函数,其平方相对速度限制。这类无摩擦,节能优化器毫不动摇地进行,直到自然放慢速度在最小的损失附近,这主要是系统的相位空间体积。我们从对动力台球等混乱系统的研究构建,我们制定了一种特定的算法,在机器学习和解决PDE解决任务(包括概括)方面具有良好的性能。它不能以高的局部最低限度停止,这是非凸损失功能的优势,并且比浅谷中的GD+动量更快。
translated by 谷歌翻译
在这项工作中,我们利用神经网络(NNS)的通用近似特性来设计端口 - Hamiltonian(pH)框架中的完全致动机械系统的互连和阻尼分配(IDA)基于控制(PBC)方案。为此,我们将IDA-PBC方法转换为解决部分差分匹配方程的监督学习问题,并满足均衡分配和Lyapunov稳定条件。这是主要的结果,即学习算法的输出在被动和Lyapunov稳定性方面具有明确的控制理论解释。通过数值模拟验证了所提出的控制设计方法,用于1和两度自由度的机械系统。
translated by 谷歌翻译
Non-equilibrium chemistry is a key process in the study of the InterStellar Medium (ISM), in particular the formation of molecular clouds and thus stars. However, computationally it is among the most difficult tasks to include in astrophysical simulations, because of the typically high (>40) number of reactions, the short evolutionary timescales (about $10^4$ times less than the ISM dynamical time) and the characteristic non-linearity and stiffness of the associated Ordinary Differential Equations system (ODEs). In this proof of concept work, we show that Physics Informed Neural Networks (PINN) are a viable alternative to traditional ODE time integrators for stiff thermo-chemical systems, i.e. up to molecular hydrogen formation (9 species and 46 reactions). Testing different chemical networks in a wide range of densities ($-2< \log n/{\rm cm}^{-3}< 3$) and temperatures ($1 < \log T/{\rm K}< 5$), we find that a basic architecture can give a comfortable convergence only for simplified chemical systems: to properly capture the sudden chemical and thermal variations a Deep Galerkin Method is needed. Once trained ($\sim 10^3$ GPUhr), the PINN well reproduces the strong non-linear nature of the solutions (errors $\lesssim 10\%$) and can give speed-ups up to a factor of $\sim 200$ with respect to traditional ODE solvers. Further, the latter have completion times that vary by about $\sim 30\%$ for different initial $n$ and $T$, while the PINN method gives negligible variations. Both the speed-up and the potential improvement in load balancing imply that PINN-powered simulations are a very palatable way to solve complex chemical calculation in astrophysical and cosmological problems.
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
在本文中,开发了用于求解具有delta功能奇异源的椭圆方程的浅丽兹型神经网络。目前的工作中有三个新颖的功能。即,(i)Delta函数奇异性自然删除,(ii)级别集合函数作为功能输入引入,(iii)它完全浅,仅包含一个隐藏层。我们首先介绍问题的能量功能,然后转换奇异源对沿界面的常规表面积分的贡献。以这种方式,可以自然删除三角洲函数,而无需引入传统正规化方法(例如众所周知的沉浸式边界方法)中常用的函数。然后将最初的问题重新重新审议为最小化问题。我们提出了一个带有一个隐藏层的浅丽兹型神经网络,以近似能量功能的全局最小化器。结果,通过最大程度地减少能源的离散版本的损耗函数来训练网络。此外,我们将界面的级别设置函数作为网络的功能输入,并发现它可以显着提高训练效率和准确性。我们执行一系列数值测试,以显示本方法的准确性及其在不规则域和较高维度中问题的能力。
translated by 谷歌翻译
概率密度演化的推导提供了对许多随机系统及其性能的行为的宝贵洞察力。但是,对于大多数实时应用程序,对概率密度演变的数值确定是一项艰巨的任务。后者是由于所需的时间和空间离散方案引起的,这些方案使大多数计算解决方案过于效率和不切实际。在这方面,有效的计算替代模型的开发至关重要。关于物理受限网络的最新研究表明,可以通过编码对深神经网络的物理洞察力来实现合适的替代物。为此,目前的工作介绍了Deeppdem,它利用物理信息网络的概念通过提出深度学习方法来解决概率密度的演变。 Deeppdem了解随机结构的一般密度演化方程(GDEE)。这种方法为无网格学习方法铺平了道路,该方法可以通过以前的模拟数据解决密度演化问题。此外,它还可以作为优化方案或实时应用程序中任何其他时空点的溶液的有效替代物。为了证明所提出的框架的潜在适用性,研究了两个具有不同激活功能的网络体系结构以及两个优化器。关于三个不同问题的数值实施验证了所提出方法的准确性和功效。
translated by 谷歌翻译
在这项工作中,我们分析了不同程度的不同精度和分段多项式测试函数如何影响变异物理学知情神经网络(VPINN)的收敛速率,同时解决椭圆边界边界值问题,如何影响变异物理学知情神经网络(VPINN)的收敛速率。使用依靠INF-SUP条件的Petrov-Galerkin框架,我们在精确解决方案和合适的计算神经网络的合适的高阶分段插值之间得出了一个先验误差估计。数值实验证实了理论预测并突出了INF-SUP条件的重要性。我们的结果表明,以某种方式违反直觉,对于平滑解决方案,实现高衰减率的最佳策略在选择最低多项式程度的测试功能方面,同时使用适当高精度的正交公式。
translated by 谷歌翻译
物理信息神经网络(PINN)能够找到给定边界值问题的解决方案。我们使用有限元方法(FEM)的几个想法来增强工程问题中现有的PINN的性能。当前工作的主要贡献是促进使用主要变量的空间梯度作为分离神经网络的输出。后来,具有较高衍生物的强形式应用于主要变量的空间梯度作为物理约束。此外,该问题的所谓能量形式被应用于主要变量,作为训练的附加约束。所提出的方法仅需要一阶导数来构建物理损失函数。我们讨论了为什么通过不同模型之间的各种比较,这一点是有益的。基于配方混合的PINN和FE方法具有一些相似之处。前者利用神经网络的复杂非线性插值将PDE及其能量形式最小化及其能量形式,而后者则在元素节点借助Shape函数在元素节点上使用相同。我们专注于异质固体,以显示深学习在不同边界条件下在复杂环境中预测解决方案的能力。针对FEM的解决方案对两个原型问题的解决方案进行了检查:弹性和泊松方程(稳态扩散问题)。我们得出的结论是,通过正确设计PINN中的网络体系结构,深度学习模型有可能在没有其他来源的任何可用初始数据中解决异质域中的未知数。最后,关于Pinn和FEM的组合进行了讨论,以在未来的开发中快速准确地设计复合材料。
translated by 谷歌翻译
对于哈密顿系统,这项工作考虑了由符号演化图产生的位置(Q)和动量(P)变量的学习和预测。与Chen&Tao(2021)相似,符号图由生成函数表示。此外,我们通过将时间序列(q_i,p_i)分为几个分区来开发新的学习方案,然后训练leap-frog神经网络(LFNN)以近似第一个(即初始条件)和一个之间的生成函数其余的分区。为了预测短时间内的系统演变,LFNN可以有效避免累积错误的问题。然后,将LFNN应用于更长的时间段内2:3谐振Kuiper带对象的行为,并且在我们以前的工作中构建的神经网络有两个重大改进(Li等人,2022年):((( 1)雅各比积分的保护; (2)高度准确的轨道演化预测。我们建议LFNN可能有助于预测哈密顿系统的长时间演变。
translated by 谷歌翻译
识别物理系统的动态需要机器学习模型,可以吸收观察数据,而还包括物理定律。基于汉密尔顿人或拉格朗日NNS等物理原则的神经网络最近显示了有希望产生外推预测和准确表示系统动态的结果。我们表明,通过训练期间将实际能量水平视为正则化术语,从而使用物理信息作为感应偏差,可以进一步提高结果。特别是在只有少量数据的情况下,这些改进可以显着提高预测能力。我们将拟议的正则化术语应用于Hamiltonian神经网络(HNN),并限制了哈密顿神经网络(CHHN)的单个和双界,在看不见的初始条件下产生预测,并以预测准确性报告显着的收益。
translated by 谷歌翻译