最近,与神经网络的时间相关微分方程的解决方案最近引起了很多关注。核心思想是学习控制解决方案从数据演变的法律,该数据可能会被随机噪声污染。但是,与其他机器学习应用相比,通常对手头的系统了解很多。例如,对于许多动态系统,诸如能量或(角度)动量之类的物理量是完全保守的。因此,神经网络必须从数据中学习这些保护定律,并且仅由于有限的训练时间和随机噪声而被满足。在本文中,我们提出了一种替代方法,该方法使用Noether的定理将保护定律本质地纳入神经网络的体系结构。我们证明,这可以更好地预测三个模型系统:在三维牛顿引力潜能中非偏见粒子的运动,Schwarzschild指标中庞大的相对论粒子的运动和两个相互作用的粒子在四个相互作用的粒子系统中的运动方面。
translated by 谷歌翻译
对应用机器学习来研究动态系统有一波兴趣。特别地,已经应用神经网络来解决运动方程,因此追踪系统的演变。与神经网络和机器学习的其他应用相反,动态系统 - 根据其潜在的对称 - 具有诸如能量,动量和角动量的不变性。传统的数值迭代方法通常违反这些保护法,在时间上传播误差,并降低方法的可预测性。我们介绍了一个汉密尔顿神经网络,用于解决控制动态系统的微分方程。这种无监督的模型是学习解决方案,可以相同地满足哈密尔顿方程,因此哈密尔顿方程式满足。一旦优化了,所提出的架构被认为是一种杂项单元,因为引入了高效的参数的解决方案。另外,通过共享网络参数并选择适当的激活函数的选择大大提高了网络的可预测性。派生错误分析,并指出数值误差取决于整体网络性能。然后采用辛结构来解决非线性振荡器的方程和混沌HENON-HENEL动态系统。在两个系统中,杂项欧拉集成商需要两个订单比HAMILTONIAN网络更多的评估点,以便在预测的相空间轨迹中获得相同的数值误差顺序。
translated by 谷歌翻译
Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.
translated by 谷歌翻译
物理学的美在于,通常在变化的系统(称为运动常数)中保守数量。找到运动的常数对于理解系统的动力学很重要,但通常需要数学水平和手动分析工作。在本文中,我们提出了一个神经网络,该网络可以同时了解系统的动力学和来自数据的运动常数。通过利用发现的运动常数,它可以对动态产生更好的预测,并且可以比基于哈密顿的神经网络在更广泛的系统上工作。此外,我们方法的训练进展可以用作系统中运动常数数量的指示,该系统可用于研究新型物理系统。
translated by 谷歌翻译
最近,对具有神经网络的物理系统建模和计算的兴趣越来越多。在古典力学中,哈密顿系统是一种优雅而紧凑的形式主义,该动力学由一个标量功能,哈密顿量完全决定。解决方案轨迹通常受到约束,以在线性矢量空间的子序列上进化。在这项工作中,我们提出了新的方法,以准确地逼近其解决方案的示例数据信息的约束机械系统的哈密顿功能。我们通过使用明确的谎言组集成商和其他经典方案来关注学习策略中约束的重要性。
translated by 谷歌翻译
学习动态是机器学习(ML)的许多重要应用的核心,例如机器人和自主驾驶。在这些设置中,ML算法通常需要推理使用高维观察的物理系统,例如图像,而不访问底层状态。最近,已经提出了几种方法将从经典机制的前沿集成到ML模型中,以解决图像的物理推理的挑战。在这项工作中,我们清醒了这些模型的当前功能。为此,我们介绍一套由17个数据集组成的套件,该数据集基于具有呈现各种动态的物理系统的视觉观测。我们对几种强大的基线进行了彻底的和详细比较了物理启发方法的主要类别。虽然包含物理前沿的模型通常可以学习具有所需特性的潜在空间,但我们的结果表明这些方法无法显着提高标准技术。尽管如此,我们发现使用连续和时间可逆动力学的使用效益所有课程的模型。
translated by 谷歌翻译
物理系统通常表示为粒子的组合,即控制系统动力学的个体动力学。但是,传统方法需要了解几个抽象数量的知识,例如推断这些颗粒动力学的能量或力量。在这里,我们提出了一个框架,即拉格朗日图神经网络(LGNN),它提供了强烈的感应偏见,可以直接从轨迹中学习基于粒子系统的拉格朗日。我们在具有约束和阻力的挑战系统上测试我们的方法 - LGNN优于诸如前馈拉格朗日神经网络(LNN)等基线,其性能提高。我们还通过模拟系统模拟系统的两个数量级比受过训练的一个数量级和混合系统大的数量级来显示系统的零弹性通用性,这些数量级是一个独特的功能。与LNN相比,LGNN的图形体系结构显着简化了学习,其性能在少量少量数据上的性能高25倍。最后,我们显示了LGNN的解释性,该解释性直接提供了对模型学到的阻力和约束力的物理见解。因此,LGNN可以为理解物理系统的动力学提供纯粹的填充,这纯粹是从可观察的数量中。
translated by 谷歌翻译
In my previous article I mentioned for the first time that a classical neural network may have quantum properties as its own structure may be entangled. The question one may ask now is whether such a quantum property can be used to entangle other systems? The answer should be yes, as shown in what follows.
translated by 谷歌翻译
对于哈密顿系统,这项工作考虑了由符号演化图产生的位置(Q)和动量(P)变量的学习和预测。与Chen&Tao(2021)相似,符号图由生成函数表示。此外,我们通过将时间序列(q_i,p_i)分为几个分区来开发新的学习方案,然后训练leap-frog神经网络(LFNN)以近似第一个(即初始条件)和一个之间的生成函数其余的分区。为了预测短时间内的系统演变,LFNN可以有效避免累积错误的问题。然后,将LFNN应用于更长的时间段内2:3谐振Kuiper带对象的行为,并且在我们以前的工作中构建的神经网络有两个重大改进(Li等人,2022年):((( 1)雅各比积分的保护; (2)高度准确的轨道演化预测。我们建议LFNN可能有助于预测哈密顿系统的长时间演变。
translated by 谷歌翻译
我们介绍了一种引力波形反演策略,用于发现二元黑洞(BBH)系统的机械模型。我们表明,只需要单一的时间序列(可能嘈杂)波形数据来构造BBH系统的运动方程。从前馈神经网络参数化的一类通用微分方程开始,我们的策略涉及构建合理的机械模型的空间和该空间内的物理信息的受限优化,以最小化波形误差。我们将我们的方法应用于各种BBH系统,包括偏心和非偏心轨道的极端和可比的质量比系统。我们展示所得到的微分方程适用于时间持续时间长于训练间隔的时间,并且相对论效应,例如临床预防,辐射反应和轨道插入,被自动占。这里概述的方法提供了研究二元黑洞系统动态的新的数据驱动方法。
translated by 谷歌翻译
我们训练一个神经网络模型,以预测宇宙N体模拟的全相空间演化。它的成功表明,神经网络模型正在准确地近似绿色的功能扩展,该功能将模拟的初始条件与其在深层非线性方向上的后期结合到结果。我们通过评估其在具有已知精确解决方案或充分理解扩展的简单情况下的良好理解的简单案例上的表现来测试这种近似值的准确性。这些场景包括球形构型,隔离平面波和两个相互作用的平面波:与用于训练的高斯随机场有很大不同的初始条件。我们发现我们的模型可以很好地推广到这些良好理解的方案,这表明网络已经推断了一般的物理原理,并从复杂的随机高斯训练数据中学习了非线性模式耦合。这些测试还为查找模型的优势和劣势以及确定改进模型的策略提供了有用的诊断。我们还测试了仅包含横向模式的初始条件,该模式的模式不仅在其相位上有所不同,而且还与训练集中使用的纵向生长模式相比。当网络遇到与训练集正交的这些初始条件时,该模型将完全失败。除了这些简单的配置外,我们还评估了模型对N体模拟的标准初始条件的密度,位移和动量功率谱的预测。我们将这些摘要统计数据与N体结果和称为COLA的近似快速模拟方法进行了比较。我们的模型在$ k \ sim 1 \ \ mathrm {mpc}^{ - 1} \,h $的非线性尺度上达到百分比精度,代表了对COLA的显着改进。
translated by 谷歌翻译
In this thesis, we consider two simple but typical control problems and apply deep reinforcement learning to them, i.e., to cool and control a particle which is subject to continuous position measurement in a one-dimensional quadratic potential or in a quartic potential. We compare the performance of reinforcement learning control and conventional control strategies on the two problems, and show that the reinforcement learning achieves a performance comparable to the optimal control for the quadratic case, and outperforms conventional control strategies for the quartic case for which the optimal control strategy is unknown. To our knowledge, this is the first time deep reinforcement learning is applied to quantum control problems in continuous real space. Our research demonstrates that deep reinforcement learning can be used to control a stochastic quantum system in real space effectively as a measurement-feedback closed-loop controller, and our research also shows the ability of AI to discover new control strategies and properties of the quantum systems that are not well understood, and we can gain insights into these problems by learning from the AI, which opens up a new regime for scientific research.
translated by 谷歌翻译
具有基于物理的诱导偏见的神经网络,例如拉格朗日神经网络(LNN)和汉密尔顿神经网络(HNN),通过编码强诱导性偏见来学习物理系统的动态。另外,还显示出适当的感应偏见的神经odes具有相似的性能。但是,当这些模型应用于基于粒子的系统时,本质上具有转导性,因此不会推广到大型系统尺寸。在本文中,我们提出了基于图的神经ode gnode,以了解动力学系统的时间演变。此外,我们仔细分析了不同电感偏差对GNODE性能的作用。我们表明,与LNN和HNN类似,对约束进行编码可以显着提高GNODE的训练效率和性能。我们的实验还评估了该模型最终性能的其他归纳偏差(例如纽顿第三定律)的价值。我们证明,诱导这些偏见可以在能量违规和推出误差方面通过数量级来增强模型的性能。有趣的是,我们观察到,经过最有效的电感偏见训练的GNODE,即McGnode,优于LNN和HNN的图形版本,即Lagrangian Graph Networks(LGN)和Hamiltonian Graph网络(HGN)在能量侵犯的方面差异,该图表的差异大约是能量侵犯网络(HGN)摆钟系统的4个数量级,春季系统的数量级约为2个数量级。这些结果表明,可以通过诱导适当的电感偏见来获得基于节点的系统的能源保存神经网络的竞争性能。
translated by 谷歌翻译
在自然界中,对称治理规律,而对称打破纹理。在人工神经网络中,对称性是一种中央设计原则,可以在世界上有效地捕获规律,但对称性破裂的作用并不充分理解。在这里,我们开发了一个理论框架,用于研究神经网络中的“学习动态几何”,并揭示了现代神经网络效率和稳定性的明确对称性的关键机制。为了构建这种理解,我们使用连续时间拉格朗日制剂模拟梯度下降的离散学习动态,其中学习规则对应于动能,并且损耗函数对应于势能。然后,我们识别“动力学对称性破坏”(KSB),当动能明确地破坏潜在功能的对称性时的条件。我们概括了物理中已知的定理,以考虑KSB,并导致Noether费用的结果:“Noether的学习动态”(NLD)。最后,我们将NLD应用于具有归一化层的神经网络,并揭示了KSB如何引入“隐式自适应优化”的机制,建立由归一化层和RMSProp引起的学习动态之间的类比。总体而言,通过拉格朗日力学的镜头,我们建立了一个理论基础,以发现神经网络的学习动态的几何设计原则。
translated by 谷歌翻译
过去几年目睹了在深入学习框架中纳入物理知识的归纳偏见的兴趣增加。特别地,越来越多的文献一直在探索实施能节能的方式,同时使用来自观察时间序列数据的神经网络来学习动态的神经网络。在这项工作中,我们调查了最近提出的节能神经网络模型,包括HNN,LNN,DELAN,SYMODEN,CHNN,CLNN及其变体。我们提供了这些模型背后的理论的紧凑级,并解释了他们的相似之处和差异。它们的性能在4个物理系统中进行了比较。我们指出了利用一些这些节能模型来设计基于能量的控制器的可能性。
translated by 谷歌翻译
湍流无处不在,获得有效,准确且可概括的订单模型仍然是一个具有挑战性的问题。该手稿开发了减少拉格朗日模型的湍流模型的层次结构,以研究和比较在拉格朗日框架内实施平滑的粒子流体动力学(SPH)结构与嵌入神经网络(NN)作为通用函数近似器中的效果。 SPH是用于近似流体力学方程的无网格拉格朗日方法。从基于神经网络(NN)的拉格朗日加速运算符的参数化开始,该层次结构逐渐结合了一个弱化和参数化的SPH框架,该框架可以执行物理对称性和保护定律。开发了两个新的参数化平滑核,其中包含在完全参数化的SPH模拟器中,并与立方和四分之一的平滑核进行了比较。对于每个模型,我们使用基于梯度的优化最小化的不同损耗函数,其中使用自动分化(AD)和灵敏度分析(SA)获得了有效的梯度计算。每个模型均经过两个地面真理(GT)数据集训练,该数据集与每周可压缩的均质各向同性湍流(hit),(1)使用弱压缩SPH的验证集,(2)来自直接数值模拟(DNS)的高忠诚度集。数值证据表明:(a)对“合成” SPH数据的方法验证; (b)嵌入在SPH框架中近似状态方程的NN的能力; (b)每个模型都能插入DNS数据; (c)编码更多的SPH结构可提高对不同湍流的马赫数和时间尺度的普遍性; (d)引入两个新型参数化平滑核可提高SPH比标准平滑核的准确性。
translated by 谷歌翻译
Units equivariance (or units covariance) is the exact symmetry that follows from the requirement that relationships among measured quantities of physics relevance must obey self-consistent dimensional scalings. Here, we express this symmetry in terms of a (non-compact) group action, and we employ dimensional analysis and ideas from equivariant machine learning to provide a methodology for exactly units-equivariant machine learning: For any given learning task, we first construct a dimensionless version of its inputs using classic results from dimensional analysis, and then perform inference in the dimensionless space. Our approach can be used to impose units equivariance across a broad range of machine learning methods which are equivariant to rotations and other groups. We discuss the in-sample and out-of-sample prediction accuracy gains one can obtain in contexts like symbolic regression and emulation, where symmetry is important. We illustrate our approach with simple numerical examples involving dynamical systems in physics and ecology.
translated by 谷歌翻译
动态系统参见在物理,生物学,化学等自然科学中广泛使用,以及电路分析,计算流体动力学和控制等工程学科。对于简单的系统,可以通过应用基本物理法来导出管理动态的微分方程。然而,对于更复杂的系统,这种方法变得非常困难。数据驱动建模是一种替代范式,可以使用真实系统的观察来了解系统的动态的近似值。近年来,对数据驱动的建模技术的兴趣增加,特别是神经网络已被证明提供了解决广泛任务的有效框架。本文提供了使用神经网络构建动态系统模型的不同方式的调查。除了基础概述外,我们还审查了相关的文献,概述了这些建模范式必须克服的数值模拟中最重要的挑战。根据审查的文献和确定的挑战,我们提供了关于有前途的研究领域的讨论。
translated by 谷歌翻译
机器人社区在为软机器人设备建模提供的理论工具的复杂程度中看到了指数增长。已经提出了不同的解决方案以克服与软机器人建模相关的困难,通常利用其他科学学科,例如连续式机械和计算机图形。这些理论基础通常被认为是理所当然的,这导致复杂的文献,因此,从未得到完整审查的主题。Withing这种情况下,提交的文件的目标是双重的。突出显示涉及建模技术的不同系列的常见理论根源,采用统一语言,以简化其主要连接和差异的分析。因此,对上市接近自然如下,并最终提供在该领域的主要作品的完整,解开,审查。
translated by 谷歌翻译
能量保护是许多物理现象和动态系统的核心。在过去的几年中,有大量作品旨在预测使用神经网络的动力系统运动轨迹,同时遵守能源保护法。这些作品中的大多数受到古典力学的启发,例如哈密顿和拉格朗日力学以及神经普通微分方程。尽管这些作品已被证明在特定领域中分别很好地工作,但缺乏统一的方法,该方法通常不适用,而无需对神经网络体系结构进行重大更改。在这项工作中,我们旨在通过提供一种简单的方法来解决此问题,该方法不仅可以应用于能源持持势的系统,还可以应用于耗散系统,通过在不同情况下以不同的情况在不同情况下以正规化术语形式包括不同的归纳偏见。损失功能。所提出的方法不需要更改神经网络体系结构,并且可以构成验证新思想的基础,因此表明有望在这个方向上加速研究。
translated by 谷歌翻译