There has been much interest recently in developing fair clustering algorithms that seek to do justice to the representation of groups defined along sensitive attributes such as race and gender. We observe that clustering algorithms could generate clusters such that different groups are disadvantaged within different clusters. We develop a clustering algorithm, building upon the centroid clustering paradigm pioneered by classical algorithms such as $k$-means, where we focus on mitigating the unfairness experienced by the most-disadvantaged group within each cluster. Our method uses an iterative optimisation paradigm whereby an initial cluster assignment is modified by reassigning objects to clusters such that the worst-off sensitive group within each cluster is benefitted. We demonstrate the effectiveness of our method through extensive empirical evaluations over a novel evaluation metric on real-world datasets. Specifically, we show that our method is effective in enhancing cluster-level group representativity fairness significantly at low impact on cluster coherence.
translated by 谷歌翻译
我们重新审视了Chierichetti等人首先引入的公平聚类问题,该问题要求每个受保护的属性在每个集群中具有近似平等的表示。即,余额财产。现有的公平聚类解决方案要么是不可扩展的,要么无法在聚类目标和公平之间实现最佳权衡。在本文中,我们提出了一种新的公平概念,我们称之为$ tau $ $ $ - fair公平,严格概括了余额财产,并实现了良好的效率与公平折衷。此外,我们表明,简单的基于贪婪的圆形算法有效地实现了这一权衡。在更一般的多价受保护属性的设置下,我们严格地分析了算法的理论特性。我们的实验结果表明,所提出的解决方案的表现优于所有最新算法,即使对于大量簇,也可以很好地工作。
translated by 谷歌翻译
了解机器学习(ML)管道不同阶段的多重公平性增强干预措施的累积效应是公平文献的关键且毫无疑问的方面。这些知识对于数据科学家/ML从业人员设计公平的ML管道可能很有价值。本文通过进行了一项广泛的经验研究迈出了探索该领域的第一步,其中包括60种干预措施,9个公平指标,2个公用事业指标(准确性和F1得分),跨4个基准数据集。我们定量分析实验数据,以衡量多种干预措施对公平,公用事业和人口群体的影响。我们发现,采用多种干预措施会导致更好的公平性和更低的效用,而不是个人干预措施。但是,添加更多的干预措施并不总是会导致更好的公平或更差的公用事业。达到高性能(F1得分)以及高公平的可能性随大的干预措施增加。不利的一面是,我们发现提高公平的干预措施会对不同的人群群体,尤其是特权群体产生负面影响。这项研究强调了对新的公平指标的必要性,这些指标是对不同人口群体的影响,除了群体之间的差异。最后,我们提供了一系列干预措施的列表,这些措施为不同的公平和公用事业指标做得最好,以帮助设计公平的ML管道。
translated by 谷歌翻译
Recommender systems can strongly influence which information we see online, e.g., on social media, and thus impact our beliefs, decisions, and actions. At the same time, these systems can create substantial business value for different stakeholders. Given the growing potential impact of such AI-based systems on individuals, organizations, and society, questions of fairness have gained increased attention in recent years. However, research on fairness in recommender systems is still a developing area. In this survey, we first review the fundamental concepts and notions of fairness that were put forward in the area in the recent past. Afterward, through a review of more than 150 scholarly publications, we present an overview of how research in this field is currently operationalized, e.g., in terms of general research methodology, fairness measures, and algorithmic approaches. Overall, our analysis of recent works points to specific research gaps. In particular, we find that in many research works in computer science, very abstract problem operationalizations are prevalent, and questions of the underlying normative claims and what represents a fair recommendation in the context of a given application are often not discussed in depth. These observations call for more interdisciplinary research to address fairness in recommendation in a more comprehensive and impactful manner.
translated by 谷歌翻译
为了减轻模型中不希望的偏差的影响,几种方法建议预先处理输入数据集,以通过防止敏感属性的推断来减少歧视风险。不幸的是,这些预处理方法中的大多数导致一代新分布与原始分布有很大不同,因此通常导致不切实际的数据。作为副作用,这种新的数据分布意味着需要重新训练现有模型才能做出准确的预测。为了解决这个问题,我们提出了一种新颖的预处理方法,我们将根据保护组的分布转换为所选目标一个,并具有附加的隐私约束,其目的是防止敏感敏感的推断属性。更确切地说,我们利用Wasserstein Gan和Attgan框架的最新作品来实现数据点的最佳运输以及强制保护属性推断的歧视器。我们提出的方法可以保留数据的可解释性,并且可以在不定义敏感组的情况下使用。此外,我们的方法可以专门建模现有的最新方法,从而提出对这些方法的统一观点。最后,关于真实和合成数据集的一些实验表明,我们的方法能够隐藏敏感属性,同时限制数据的变形并改善了后续数据分析任务的公平性。
translated by 谷歌翻译
在聚类问题中,中央决策者通过顶点给出完整的公制图,并且必须提供最小化某些目标函数的顶点的聚类。在公平的聚类问题中,顶点以颜色(例如,组中的成员身份)赋予,并且有效群集的功能也可能包括该群集中的颜色的表示。在公平集群中的事先工作假设完全了解集团成员资格。在本文中,我们通过假设通过概率分配不完美了解集团成员资格的知识。我们在此具有近似率保证的更常规设置中呈现聚类算法。我们还解决了“公制成员资格”的问题,其中不同的群体的概念和距离。使用我们所提出的算法以及基线进行实验,以验证我们的方法,并且当组成员资格不确定时,验证我们的方法以及表面细微的问题。
translated by 谷歌翻译
It is of critical importance to be aware of the historical discrimination embedded in the data and to consider a fairness measure to reduce bias throughout the predictive modeling pipeline. Given various notions of fairness defined in the literature, investigating the correlation and interaction among metrics is vital for addressing unfairness. Practitioners and data scientists should be able to comprehend each metric and examine their impact on one another given the context, use case, and regulations. Exploring the combinatorial space of different metrics for such examination is burdensome. To alleviate the burden of selecting fairness notions for consideration, we propose a framework that estimates the correlation among fairness notions. Our framework consequently identifies a set of diverse and semantically distinct metrics as representative for a given context. We propose a Monte-Carlo sampling technique for computing the correlations between fairness metrics by indirect and efficient perturbation in the model space. Using the estimated correlations, we then find a subset of representative metrics. The paper proposes a generic method that can be generalized to any arbitrary set of fairness metrics. We showcase the validity of the proposal using comprehensive experiments on real-world benchmark datasets.
translated by 谷歌翻译
随着机器学习变得普遍,减轻培训数据中存在的任何不公平性变得至关重要。在公平的各种概念中,本文的重点是众所周知的个人公平,该公平规定应该对类似的人进行类似的对待。虽然在训练模型(对处理)时可以提高个人公平性,但我们认为在模型培训(预处理)之前修复数据是一个更基本的解决方案。特别是,我们表明标签翻转是改善个人公平性的有效预处理技术。我们的系统IFLIPPER解决了限制了个人公平性违规行为的最小翻转标签的优化问题,当培训数据中的两个类似示例具有不同的标签时,发生违规情况。我们首先证明问题是NP-HARD。然后,我们提出了一种近似的线性编程算法,并提供理论保证其结果与标签翻转数量有关的结果与最佳解决方案有多近。我们还提出了使线性编程解决方案更加最佳的技术,而不会超过违规限制。实际数据集上的实验表明,在看不见的测试集的个人公平和准确性方面,IFLIPPER显着优于其他预处理基线。此外,IFLIPPER可以与处理中的技术结合使用,以获得更好的结果。
translated by 谷歌翻译
将许多排名者的偏好结合到一个单一共识排名中对于从招聘和入学到贷款的结果应用至关重要。尽管已经对群体公平进行分类进行了广泛的研究,但排名,尤其是等级聚集的群体公平仍处于起步阶段。最近的工作介绍了合并排名的公平等级聚合的概念,但仅限于候选人具有单个二进制保护属性的情况,即仅分为两组。然而,如何建立共识排名仍然是一个开放的问题,该排名代表了所有排名者的偏好,同时确保对具有多个受保护属性的候选人(例如性别,种族和国籍)进行公平待遇。在这项工作中,我们是第一个定义和解决此开放的多属性公平共识排名(MFCR)问题的人。作为基础,我们为名为Mani-Rank的排名设计了新颖的团体公平标准,以确保对由个体受保护属性及其交集定义的群体进行公平处理。利用摩尼级标准,我们开发了一系列算法,这些算法首次解决了MFCR问题。我们对各种共识情景的实验研究表明,我们的MFCR方法是实现交叉和受保护属性公平性的唯一方法,同时也代表了通过许多基本排名表达的偏好。我们对绩效奖学金的现实案例研究说明了我们的MFCR方法对减轻多个受保护属性及其交叉点的偏见的有效性。这是出现在ICDE 2022中的“ Mani-Rank:Mani-Rank:多个属性和交叉组公平性”的扩展版本。
translated by 谷歌翻译
我们解决了分类中群体公平的问题,目的是学习不会不公正地歧视人口亚组的模型。大多数现有方法仅限于简单的二进制任务或涉及难以实施培训机制。这降低了他们的实际适用性。在本文中,我们提出了Fairgrad,这是一种基于重新加权方案来实施公平性的方法,该计划根据是否有优势地迭代地学习特定权重。Fairgrad易于实施,可以适应各种标准公平定义。此外,我们表明它与各种数据集的标准基线相媲美,包括自然语言处理和计算机视觉中使用的数据集。
translated by 谷歌翻译
在高风险领域(人们的生计受到影响)中,机器学习的日益增长的使用迫切需要解释和公平的算法。在这些设置中,此类算法的准确性也至关重要。考虑到这些需求,我们提出了一个混合整数优化(MIO)框架,用于学习具有固定深度的最佳分类树,可以通过任意域特定的公平约束来方便地增强。我们基于在流行数据集上建造公平树木的最先进方法基准测试;鉴于固定的歧视阈值,我们的方法平均将样本外(OOS)的精度提高了2.3个百分点,并在88.9%的实验上获得了更高的OOS精度。我们还将各种算法公平概念纳入我们的方法中,展示其多功能建模能力,使决策者可以微调准确性和公平性之间的权衡。
translated by 谷歌翻译
越来越多地部署算法和模型来为人们提供决定,不可避免地会影响他们的生活。结果,负责开发这些模型的人必须仔细评估他们对不同人群的影响并偏爱群体公平,也就是说,确保由敏感人口属性(例如种族或性别)确定的群体不会受到不公正的对待。为了实现这一目标,这些人口统计学属性的可用性(意识)是评估这些模型影响的人的基本基础。不幸的是,收集和存储这些属性通常与行业实践以及有关数据最小化和隐私的立法冲突。因此,即使是从开发它们的公司内部,也很难衡量训练有素的模型的群体公平性。在这项工作中,我们通过使用量化技术来解决在敏感属性不认识的情况下衡量群体公平性的问题,这是一项与直接提供群体级别的患病率估算(而不是个人级别的类标签)有关的监督学习任务。我们表明,量化方法特别适合解决未通行问题的公平性,因为它们是可行的不可避免的分配变化,同时将(理想的)目标取消了(不可避免的)允许(不良)的副作用的(理想的)目标个人敏感属性的推断。更详细地说,我们表明,在不认识下的公平性可以作为量化问题,并通过量化文献中的可靠方法解决。我们表明,这些方法在五个实验方案中测量人口统计学的先前方法都优于以前的方法,这对应于使分类器公平性估计不认识的重要挑战。
translated by 谷歌翻译
自几十年前以来,已经证明了机器学习评估贷款申请人信誉的实用性。但是,自动决策可能会导致对群体或个人的不同治疗方法,可能导致歧视。本文基准了12种最大的偏见缓解方法,讨论其绩效,该绩效基于5个不同的公平指标,获得的准确性以及为金融机构提供的潜在利润。我们的发现表明,在确保准确性和利润的同时,实现公平性方面的困难。此外,它突出了一些表现最好和最差的人,并有助于弥合实验机学习及其工业应用之间的差距。
translated by 谷歌翻译
作为一种预测模型的评分系统具有可解释性和透明度的显着优势,并有助于快速决策。因此,评分系统已广泛用于各种行业,如医疗保健和刑事司法。然而,这些模型中的公平问题长期以来一直受到批评,并且使用大数据和机器学习算法在评分系统的构建中提高了这个问题。在本文中,我们提出了一般框架来创建公平知识,数据驱动评分系统。首先,我们开发一个社会福利功能,融入了效率和群体公平。然后,我们将社会福利最大化问题转换为机器学习中的风险最小化任务,并在混合整数编程的帮助下导出了公平感知评分系统。最后,导出了几种理论界限用于提供参数选择建议。我们拟议的框架提供了适当的解决方案,以解决进程中的分组公平问题。它使政策制定者能够设置和定制其所需的公平要求以及其他特定于应用程序的约束。我们用几个经验数据集测试所提出的算法。实验证据支持拟议的评分制度在实现利益攸关方的最佳福利以及平衡可解释性,公平性和效率的需求方面的有效性。
translated by 谷歌翻译
尽管算法公平最近取得了进步,但通过广义线性模型(GLM)实现公平性的方法论,尽管GLM在实践中广泛使用,但尚待探索。在本文中,我们基于预期的结果或对数类似物的均衡介绍了两个公平标准。我们证明,对于GLMS,这两个标准都可以通过基于GLM的线性组件的凸惩罚项来实现,从而允许有效优化。我们还得出了由此产生的公平GLM估计器的理论特性。为了从经验上证明所提出的公平GLM的功效,我们将其与其他众所周知的公平预测方法进行了比较,以用于二进制分类和回归的广泛基准数据集。此外,我们证明了公平的GLM可以为二进制和连续结果以外的一系列响应变量产生公平的预测。
translated by 谷歌翻译
We review clustering as an analysis tool and the underlying concepts from an introductory perspective. What is clustering and how can clusterings be realised programmatically? How can data be represented and prepared for a clustering task? And how can clustering results be validated? Connectivity-based versus prototype-based approaches are reflected in the context of several popular methods: single-linkage, spectral embedding, k-means, and Gaussian mixtures are discussed as well as the density-based protocols (H)DBSCAN, Jarvis-Patrick, CommonNN, and density-peaks.
translated by 谷歌翻译
分类,一种重大研究的数据驱动机器学习任务,驱动越来越多的预测系统,涉及批准的人类决策,如贷款批准和犯罪风险评估。然而,分类器经常展示歧视性行为,特别是当呈现有偏置数据时。因此,分类公平已经成为一个高优先级的研究区。数据管理研究显示与数据和算法公平有关的主题的增加和兴趣,包括公平分类的主题。公平分类的跨学科努力,具有最大存在的机器学习研究,导致大量的公平概念和尚未系统地评估和比较的广泛方法。在本文中,我们对13个公平分类方法和额外变种的广泛分析,超越,公平,公平,效率,可扩展性,对数据误差的鲁棒性,对潜在的ML模型,数据效率和使用各种指标的稳定性的敏感性和稳定性现实世界数据集。我们的分析突出了对不同指标的影响的新颖见解和高级方法特征对不同方面的性能方面。我们还讨论了选择适合不同实际设置的方法的一般原则,并确定以数据管理为中心的解决方案可能产生最大影响的区域。
translated by 谷歌翻译
在社会背景下的算法决策,例如零售定价,贷款管理,在线平台上的建议等,通常涉及为了学习而进行决策的实验,这导致受这些决策影响的人们的不公平感知。因此,有必要在此类决策过程中嵌入适当的公平概念。本文的目的是通过一种新颖的元观念来强调公平的时间概念与在线决策之间的丰富界面,以确保在决策时确保公平。考虑到静态决策的一些任意比较公平概念(例如,学生最多应支付一般成人价格的90%),如果满足上述公平概念,则相应的在线决策算法在决策时满足公平性对于任何与过去的决定相比,收到决定的任何实体。我们表明,这一基本要求引入了在线决策中的新方法论挑战。我们说明了在随机凸优化的背景下,在比较公平的约束下,在随机凸优化的背景下解决这些挑战所必需的新方法,该方法取决于实体所收到的决策,这取决于过去每个人都收到的决策。该论文展示了由于时间公平的关注而引起的在线决策中的新研究机会。
translated by 谷歌翻译
机器学习模型在高赌注应用中变得普遍存在。尽管在绩效方面有明显的效益,但该模型可以表现出对少数民族群体的偏见,并导致决策过程中的公平问题,导致对个人和社会的严重负面影响。近年来,已经开发了各种技术来减轻机器学习模型的偏差。其中,加工方法已经增加了社区的关注,在模型设计期间直接考虑公平,以诱导本质上公平的模型,从根本上减轻了产出和陈述中的公平问题。在本调查中,我们审查了加工偏置减缓技术的当前进展。基于在模型中实现公平的地方,我们将它们分类为明确和隐性的方法,前者直接在培训目标中纳入公平度量,后者重点介绍精炼潜在代表学习。最后,我们在讨论该社区中的研究挑战来讨论调查,以激励未来的探索。
translated by 谷歌翻译
尽管机器学习和基于排名的系统在广泛用于敏感决策过程(例如,确定职位候选者,分配信用评分)时,他们对成果的意外偏见充满了疑虑,这使算法公平(例如,人口统计学公平)平等,机会平等)的目标。 “算法追索”提供了可行的恢复动作,通过修改属性来改变不良结果。我们介绍了排名级别的追索权公平的概念,并开发了一个“追索意识的排名”解决方案,该解决方案满足了排名的追索公平约束,同时最大程度地减少了建议的修改成本。我们的解决方案建议干预措施可以重新排序数据库记录的排名列表并减轻组级别的不公平性;具体而言,子组的不成比例表示和追索权成本不平衡。此重新排列可确定对数据点的最小修改,这些属性修改根据其易于解决方案进行了加权。然后,我们提出了一个有效的基于块的扩展,该扩展可以在任何粒度上重新排序(例如,银行贷款利率的多个括号,搜索引擎结果的多页)。对真实数据集的评估表明,尽管现有方法甚至可能加剧诉求不公平,但我们的解决方案 - raguel-可以显着改善追索性的公平性。 Raguel通过反事实生成和重新排列的结合过程优于改善追索性公平的替代方案,同时对大型数据集保持了有效的效率。
translated by 谷歌翻译