越来越多地部署算法和模型来为人们提供决定,不可避免地会影响他们的生活。结果,负责开发这些模型的人必须仔细评估他们对不同人群的影响并偏爱群体公平,也就是说,确保由敏感人口属性(例如种族或性别)确定的群体不会受到不公正的对待。为了实现这一目标,这些人口统计学属性的可用性(意识)是评估这些模型影响的人的基本基础。不幸的是,收集和存储这些属性通常与行业实践以及有关数据最小化和隐私的立法冲突。因此,即使是从开发它们的公司内部,也很难衡量训练有素的模型的群体公平性。在这项工作中,我们通过使用量化技术来解决在敏感属性不认识的情况下衡量群体公平性的问题,这是一项与直接提供群体级别的患病率估算(而不是个人级别的类标签)有关的监督学习任务。我们表明,量化方法特别适合解决未通行问题的公平性,因为它们是可行的不可避免的分配变化,同时将(理想的)目标取消了(不可避免的)允许(不良)的副作用的(理想的)目标个人敏感属性的推断。更详细地说,我们表明,在不认识下的公平性可以作为量化问题,并通过量化文献中的可靠方法解决。我们表明,这些方法在五个实验方案中测量人口统计学的先前方法都优于以前的方法,这对应于使分类器公平性估计不认识的重要挑战。
translated by 谷歌翻译
分类,一种重大研究的数据驱动机器学习任务,驱动越来越多的预测系统,涉及批准的人类决策,如贷款批准和犯罪风险评估。然而,分类器经常展示歧视性行为,特别是当呈现有偏置数据时。因此,分类公平已经成为一个高优先级的研究区。数据管理研究显示与数据和算法公平有关的主题的增加和兴趣,包括公平分类的主题。公平分类的跨学科努力,具有最大存在的机器学习研究,导致大量的公平概念和尚未系统地评估和比较的广泛方法。在本文中,我们对13个公平分类方法和额外变种的广泛分析,超越,公平,公平,效率,可扩展性,对数据误差的鲁棒性,对潜在的ML模型,数据效率和使用各种指标的稳定性的敏感性和稳定性现实世界数据集。我们的分析突出了对不同指标的影响的新颖见解和高级方法特征对不同方面的性能方面。我们还讨论了选择适合不同实际设置的方法的一般原则,并确定以数据管理为中心的解决方案可能产生最大影响的区域。
translated by 谷歌翻译
公平性是确保机器学习(ML)预测系统不会歧视特定个人或整个子人群(尤其是少数族裔)的重要要求。鉴于观察公平概念的固有主观性,文献中已经引入了几种公平概念。本文是一项调查,说明了通过大量示例和场景之间的公平概念之间的微妙之处。此外,与文献中的其他调查不同,它解决了以下问题:哪种公平概念最适合给定的现实世界情景,为什么?我们试图回答这个问题的尝试包括(1)确定手头现实世界情景的一组与公平相关的特征,(2)分析每个公平概念的行为,然后(3)适合这两个元素以推荐每个特定设置中最合适的公平概念。结果总结在决策图中可以由从业者和政策制定者使用,以导航相对较大的ML目录。
translated by 谷歌翻译
联合学习允许许多设备在机器学习模型的培训中进行协作。与传统的机器学习一样,越来越关注的是,接受联合学习的模型可能会对不同的人群组表现出不同的表现。现有的解决方案来衡量和确保跨小组的平等模型绩效需要访问有关小组成员的信息,但是此访问并不总是可用或可取的,尤其是在联邦学习的隐私愿望下。我们研究了衡量此类性能差异的可行性,同时保护用户组成员资格的隐私以及联合模型在用户数据上的性能。保护两者对于隐私至关重要,因为它们可能是相关的,因此学习一个可能会揭示另一个。另一方面,从公用事业的角度来看,保留隐私的数据应保持相关性,以确保能够对性能差异进行准确的测量。我们通过开发当地差异化的私人机制来实现这两个目标,从而保留小组成员和模型绩效之间的相关性。为了分析机制的有效性,我们在对给定隐私预算进行优化时估算差异时的错误,并在合成数据上验证这些界限。我们的结果表明,对于参与的客户数量的实际数量,错误迅速减少,这表明,与先前的工作相反,保护受保护属性的隐私不一定与确定联合模型性能的差异相抵触。
translated by 谷歌翻译
基于AI和机器学习的决策系统已在各种现实世界中都使用,包括医疗保健,执法,教育和金融。不再是牵强的,即设想一个未来,自治系统将推动整个业务决策,并且更广泛地支持大规模决策基础设施以解决社会最具挑战性的问题。当人类做出决定时,不公平和歧视的问题普遍存在,并且当使用几乎没有透明度,问责制和公平性的机器做出决定时(或可能会放大)。在本文中,我们介绍了\ textit {Causal公平分析}的框架,目的是填补此差距,即理解,建模,并可能解决决策设置中的公平性问题。我们方法的主要见解是将观察到数据中存在的差异的量化与基本且通常是未观察到的因果机制收集的因果机制的收集,这些机制首先会产生差异,挑战我们称之为因果公平的基本问题分析(FPCFA)。为了解决FPCFA,我们研究了分解差异和公平性的经验度量的问题,将这种变化归因于结构机制和人群的不同单位。我们的努力最终达到了公平地图,这是组织和解释文献中不同标准之间关系的首次系统尝试。最后,我们研究了进行因果公平分析并提出一本公平食谱的最低因果假设,该假设使数据科学家能够评估不同影响和不同治疗的存在。
translated by 谷歌翻译
业务分析(BA)的广泛采用带来了财务收益和提高效率。但是,当BA以公正的影响为决定时,这些进步同时引起了人们对法律和道德挑战的不断增加。作为对这些关注的回应,对算法公平性的新兴研究涉及算法输出,这些算法可能会导致不同的结果或其他形式的对人群亚组的不公正现象,尤其是那些在历史上被边缘化的人。公平性是根据法律合规,社会责任和效用是相关的;如果不充分和系统地解决,不公平的BA系统可能会导致社会危害,也可能威胁到组织自己的生存,其竞争力和整体绩效。本文提供了有关算法公平的前瞻性,注重BA的评论。我们首先回顾有关偏见来源和措施的最新研究以及偏见缓解算法。然后,我们对公用事业关系的详细讨论进行了详细的讨论,强调经常假设这两种构造之间经常是错误的或短视的。最后,我们通过确定企业学者解决有效和负责任的BA的关键的有影响力的公开挑战的机会来绘制前进的道路。
translated by 谷歌翻译
这项研究研究了在美国国税局(IRS)为税收审计选择的系统中,算法公平性问题。尽管算法公平的领域主要围绕着像个人一样对待的概念发展,但我们却探索了垂直平等的概念 - 适当地考虑到个人之间的相关差异 - 这在许多公共政策环境中都是公平性的核心组成部分。应用于美国个人所得税体系的设计,垂直权益与不同收入水平的纳税人之间的税收和执法负担的公平分配有关。通过与财政部和国税局的独特合作,我们使用匿名个人纳税人微型数据,风险选择的审计以及2010 - 14年度的随机审计来研究税务管理的垂直平等。特别是,我们评估了现代机器学习方法选择审核的使用如何影响垂直权益。首先,我们展示了更灵活的机器学习(分类)方法(而不是简单的模型)如何将审计负担从高收入纳税人转移到中等收入纳税人。其次,我们表明,尽管现有的算法公平技术可以减轻跨收入的某些差异,但它们可能会造成巨大的绩效成本。第三,我们表明,是否将低报告的风险视为分类或回归问题的选择是高度的。从分类转变为回归模型,以预测不足的审计转变会大大向高收入个人转移,同时增加收入。最后,我们探讨了差异审计成本在塑造审计分配中的作用。我们表明,对回报的狭窄关注会破坏垂直权益。我们的结果对整个公共部门的算法工具的设计具有影响。
translated by 谷歌翻译
近年来,机器学习算法在多种高风险决策应用程序中变得无处不在。机器学习算法从数据中学习模式的无与伦比的能力也使它们能够融合嵌入的偏差。然后,一个有偏见的模型可以做出不成比例地损害社会中某些群体的决策 - 例如,他们获得金融服务的机会。对这个问题的认识引起了公平ML领域,该领域的重点是研究,衡量和缓解算法预测的不公平性,相对于一组受保护的群体(例如种族或性别)。但是,算法不公平的根本原因仍然难以捉摸,研究人员在指责ML算法或训练的数据之间进行了划分。在这项工作中,我们坚持认为,算法不公平源于数据中模型与偏见之间的相互作用,而不是源于其中任何一个的孤立贡献。为此,我们提出了一种分类法来表征数据偏差,并研究了一系列关于公平盲目的ML算法在不同数据偏见设置下表现出的公平性准确性权衡的假设。在我们的现实帐户开放欺诈用例中,我们发现每个设置都需要特定的权衡,从而影响了预期价值和差异的公平性 - 后者通常没有注意到。此外,我们展示了算法在准确性和公平性方面如何根据影响数据的偏差进行比较。最后,我们注意到,在特定的数据偏见条件下,简单的预处理干预措施可以成功平衡小组错误率,而在更复杂的设置中相同的技术失败。
translated by 谷歌翻译
作为一种预测模型的评分系统具有可解释性和透明度的显着优势,并有助于快速决策。因此,评分系统已广泛用于各种行业,如医疗保健和刑事司法。然而,这些模型中的公平问题长期以来一直受到批评,并且使用大数据和机器学习算法在评分系统的构建中提高了这个问题。在本文中,我们提出了一般框架来创建公平知识,数据驱动评分系统。首先,我们开发一个社会福利功能,融入了效率和群体公平。然后,我们将社会福利最大化问题转换为机器学习中的风险最小化任务,并在混合整数编程的帮助下导出了公平感知评分系统。最后,导出了几种理论界限用于提供参数选择建议。我们拟议的框架提供了适当的解决方案,以解决进程中的分组公平问题。它使政策制定者能够设置和定制其所需的公平要求以及其他特定于应用程序的约束。我们用几个经验数据集测试所提出的算法。实验证据支持拟议的评分制度在实现利益攸关方的最佳福利以及平衡可解释性,公平性和效率的需求方面的有效性。
translated by 谷歌翻译
A recent explosion of research focuses on developing methods and tools for building fair predictive models. However, most of this work relies on the assumption that the training and testing data are representative of the target population on which the model will be deployed. However, real-world training data often suffer from selection bias and are not representative of the target population for many reasons, including the cost and feasibility of collecting and labeling data, historical discrimination, and individual biases. In this paper, we introduce a new framework for certifying and ensuring the fairness of predictive models trained on biased data. We take inspiration from query answering over incomplete and inconsistent databases to present and formalize the problem of consistent range approximation (CRA) of answers to queries about aggregate information for the target population. We aim to leverage background knowledge about the data collection process, biased data, and limited or no auxiliary data sources to compute a range of answers for aggregate queries over the target population that are consistent with available information. We then develop methods that use CRA of such aggregate queries to build predictive models that are certifiably fair on the target population even when no external information about that population is available during training. We evaluate our methods on real data and demonstrate improvements over state of the art. Significantly, we show that enforcing fairness using our methods can lead to predictive models that are not only fair, but more accurate on the target population.
translated by 谷歌翻译
自几十年前以来,已经证明了机器学习评估贷款申请人信誉的实用性。但是,自动决策可能会导致对群体或个人的不同治疗方法,可能导致歧视。本文基准了12种最大的偏见缓解方法,讨论其绩效,该绩效基于5个不同的公平指标,获得的准确性以及为金融机构提供的潜在利润。我们的发现表明,在确保准确性和利润的同时,实现公平性方面的困难。此外,它突出了一些表现最好和最差的人,并有助于弥合实验机学习及其工业应用之间的差距。
translated by 谷歌翻译
What does it mean for an algorithm to be biased? In U.S. law, unintentional bias is encoded via disparate impact, which occurs when a selection process has widely different outcomes for different groups, even as it appears to be neutral. This legal determination hinges on a definition of a protected class (ethnicity, gender) and an explicit description of the process.When computers are involved, determining disparate impact (and hence bias) is harder. It might not be possible to disclose the process. In addition, even if the process is open, it might be hard to elucidate in a legal setting how the algorithm makes its decisions. Instead of requiring access to the process, we propose making inferences based on the data it uses.We present four contributions. First, we link disparate impact to a measure of classification accuracy that while known, has received relatively little attention. Second, we propose a test for disparate impact based on how well the protected class can be predicted from the other attributes. Third, we describe methods by which data might be made unbiased. Finally, we present empirical evidence supporting the effectiveness of our test for disparate impact and our approach for both masking bias and preserving relevant information in the data. Interestingly, our approach resembles some actual selection practices that have recently received legal scrutiny.
translated by 谷歌翻译
我们研究公平的机器学习(ML)设置,其中“上游”模型开发人员的任务是生产公平的ML模型,该模型将被几个类似但独特的“下游”用户使用。这种设置引入了新的挑战,这些挑战因许多现有的公平干预措施而尚未解决,这与现有的批评相呼应,即当前方法并非在现实世界公平的ML用例的多元化需求中广泛适用。为此,我们通过采用基于分配的公平分类视图来解决向上/下流设置。具体而言,我们引入了一种新的公平定义,分布奇偶校验,该定义衡量了跨受保护组的结果分布的差异,并提出了一种后处理方法,以使用最佳运输技术来最大程度地减少此措施。我们证明我们的方法能够为所有下游用户,跨各种公平定义创造更公平的成果,并在推理时间内在未标记的数据上工作。我们通过与几种类似方法和四个基准任务进行比较,通过比较实验验证了这一主张。最终,我们认为可以通过开发特定的干预措施来产生更公平的分类结果。
translated by 谷歌翻译
我们在分类的背景下研究公平,其中在接收器的曲线下的区域(AUC)下的区域测量的性能。当I型(误报)和II型(假阴性)错误都很重要时,通常使用AUC。然而,相同的分类器可以针对不同的保护组具有显着变化的AUC,并且在现实世界中,通常希望减少这种交叉组差异。我们解决如何选择其他功能,以便最大地改善弱势群体的AUC。我们的结果表明,功能的无条件方差不会通知我们关于AUC公平,而是类条件方差。使用此连接,我们基于功能增强(添加功能)来开发一种新颖的方法Fairauc,以减轻可识别组之间的偏差。我们评估综合性和现实世界(Compas)数据集的Fairauc,并发现它对于相对于基准,最大限度地提高了总体AUC并最大限度地减少了组之间的偏见的基准,它显着改善了弱势群体的AUC。
translated by 谷歌翻译
近年来,解决机器学习公平性(ML)和自动决策的问题引起了处理人工智能的科学社区的大量关注。已经提出了ML中的公平定义的一种不同的定义,认为不同概念是影响人口中个人的“公平决定”的不同概念。这些概念之间的精确差异,含义和“正交性”尚未在文献中完全分析。在这项工作中,我们试图在这个解释中汲取一些订单。
translated by 谷歌翻译
Evaluating new techniques on realistic datasets plays a crucial role in the development of ML research and its broader adoption by practitioners. In recent years, there has been a significant increase of publicly available unstructured data resources for computer vision and NLP tasks. However, tabular data -- which is prevalent in many high-stakes domains -- has been lagging behind. To bridge this gap, we present Bank Account Fraud (BAF), the first publicly available privacy-preserving, large-scale, realistic suite of tabular datasets. The suite was generated by applying state-of-the-art tabular data generation techniques on an anonymized,real-world bank account opening fraud detection dataset. This setting carries a set of challenges that are commonplace in real-world applications, including temporal dynamics and significant class imbalance. Additionally, to allow practitioners to stress test both performance and fairness of ML methods, each dataset variant of BAF contains specific types of data bias. With this resource, we aim to provide the research community with a more realistic, complete, and robust test bed to evaluate novel and existing methods.
translated by 谷歌翻译
Recommender systems can strongly influence which information we see online, e.g., on social media, and thus impact our beliefs, decisions, and actions. At the same time, these systems can create substantial business value for different stakeholders. Given the growing potential impact of such AI-based systems on individuals, organizations, and society, questions of fairness have gained increased attention in recent years. However, research on fairness in recommender systems is still a developing area. In this survey, we first review the fundamental concepts and notions of fairness that were put forward in the area in the recent past. Afterward, through a review of more than 150 scholarly publications, we present an overview of how research in this field is currently operationalized, e.g., in terms of general research methodology, fairness measures, and algorithmic approaches. Overall, our analysis of recent works points to specific research gaps. In particular, we find that in many research works in computer science, very abstract problem operationalizations are prevalent, and questions of the underlying normative claims and what represents a fair recommendation in the context of a given application are often not discussed in depth. These observations call for more interdisciplinary research to address fairness in recommendation in a more comprehensive and impactful manner.
translated by 谷歌翻译
We propose a criterion for discrimination against a specified sensitive attribute in supervised learning, where the goal is to predict some target based on available features. Assuming data about the predictor, target, and membership in the protected group are available, we show how to optimally adjust any learned predictor so as to remove discrimination according to our definition. Our framework also improves incentives by shifting the cost of poor classification from disadvantaged groups to the decision maker, who can respond by improving the classification accuracy.In line with other studies, our notion is oblivious: it depends only on the joint statistics of the predictor, the target and the protected attribute, but not on interpretation of individual features. We study the inherent limits of defining and identifying biases based on such oblivious measures, outlining what can and cannot be inferred from different oblivious tests.We illustrate our notion using a case study of FICO credit scores.
translated by 谷歌翻译
Objectives: Discussions of fairness in criminal justice risk assessments typically lack conceptual precision. Rhetoric too often substitutes for careful analysis. In this paper, we seek to clarify the tradeoffs between different kinds of fairness and between fairness and accuracy.Methods: We draw on the existing literatures in criminology, computer science and statistics to provide an integrated examination of fairness and accuracy in criminal justice risk assessments. We also provide an empirical illustration using data from arraignments.Results: We show that there are at least six kinds of fairness, some of which are incompatible with one another and with accuracy.Conclusions: Except in trivial cases, it is impossible to maximize accuracy and fairness at the same time, and impossible simultaneously to satisfy all kinds of fairness. In practice, a major complication is different base rates across different legally protected groups. There is a need to consider challenging tradeoffs.
translated by 谷歌翻译
最近的研究表明,看似公平的机器学习模型在为对人们的生活或福祉产生影响的决策提供信息(例如,涉及教育,就业和贷款的申请)可能会在长期内无意中增加社会不平等。这是因为先前的公平意识算法仅考虑静态公平限制,例如机会均等或人口统计奇偶。但是,强制执行这种类型的限制可能会导致模型对处境不利的个人和社区产生负面影响。我们介绍ELF(执行长期公平性),这是第一个分类算法,可提供高信任公平保证,以长期或延迟影响。我们证明,ELF返回不公平解决方案的概率小于用户指定的公差,并且(在轻度假设下),如果有足够的培训数据,ELF能够找到并返回公平的解决方案,如果存在一个公平的解决方案。我们通过实验表明,我们的算法可以成功缓解长期不公平。
translated by 谷歌翻译