业务分析(BA)的广泛采用带来了财务收益和提高效率。但是,当BA以公正的影响为决定时,这些进步同时引起了人们对法律和道德挑战的不断增加。作为对这些关注的回应,对算法公平性的新兴研究涉及算法输出,这些算法可能会导致不同的结果或其他形式的对人群亚组的不公正现象,尤其是那些在历史上被边缘化的人。公平性是根据法律合规,社会责任和效用是相关的;如果不充分和系统地解决,不公平的BA系统可能会导致社会危害,也可能威胁到组织自己的生存,其竞争力和整体绩效。本文提供了有关算法公平的前瞻性,注重BA的评论。我们首先回顾有关偏见来源和措施的最新研究以及偏见缓解算法。然后,我们对公用事业关系的详细讨论进行了详细的讨论,强调经常假设这两种构造之间经常是错误的或短视的。最后,我们通过确定企业学者解决有效和负责任的BA的关键的有影响力的公开挑战的机会来绘制前进的道路。
translated by 谷歌翻译
Recommender systems can strongly influence which information we see online, e.g., on social media, and thus impact our beliefs, decisions, and actions. At the same time, these systems can create substantial business value for different stakeholders. Given the growing potential impact of such AI-based systems on individuals, organizations, and society, questions of fairness have gained increased attention in recent years. However, research on fairness in recommender systems is still a developing area. In this survey, we first review the fundamental concepts and notions of fairness that were put forward in the area in the recent past. Afterward, through a review of more than 150 scholarly publications, we present an overview of how research in this field is currently operationalized, e.g., in terms of general research methodology, fairness measures, and algorithmic approaches. Overall, our analysis of recent works points to specific research gaps. In particular, we find that in many research works in computer science, very abstract problem operationalizations are prevalent, and questions of the underlying normative claims and what represents a fair recommendation in the context of a given application are often not discussed in depth. These observations call for more interdisciplinary research to address fairness in recommendation in a more comprehensive and impactful manner.
translated by 谷歌翻译
Advocates of algorithmic techniques like data mining argue that these techniques eliminate human biases from the decision-making process. But an algorithm is only as good as the data it works with. Data is frequently imperfect in ways that allow these algorithms to inherit the prejudices of prior decision makers. In other cases, data may simply reflect the widespread biases that persist in society at large. In still others, data mining can discover surprisingly useful regularities that are really just preexisting patterns of exclusion and inequality. Unthinking reliance on data mining can deny historically disadvantaged and vulnerable groups full participation in society. Worse still, because the resulting discrimination is almost always an unintentional emergent property of the algorithm's use rather than a conscious choice by its programmers, it can be unusually hard to identify the source of the problem or to explain it to a court. This Essay examines these concerns through the lens of American antidiscrimination law-more particularly, through Title
translated by 谷歌翻译
机器学习显着增强了机器人的能力,使他们能够在人类环境中执行广泛的任务并适应我们不确定的现实世界。机器学习各个领域的最新作品强调了公平性的重要性,以确保这些算法不会再现人类的偏见并导致歧视性结果。随着机器人学习系统在我们的日常生活中越来越多地执行越来越多的任务,了解这种偏见的影响至关重要,以防止对某些人群的意外行为。在这项工作中,我们从跨学科的角度进行了关于机器人学习公平性的首次调查,该研究跨越了技术,道德和法律挑战。我们提出了偏见来源的分类法和由此产生的歧视类型。使用来自不同机器人学习域的示例,我们研究了不公平结果和减轻策略的场景。我们通过涵盖不同的公平定义,道德和法律考虑以及公平机器人学习的方法来介绍该领域的早期进步。通过这项工作,我们旨在为公平机器人学习中的开创性发展铺平道路。
translated by 谷歌翻译
机器学习(ML)越来越多地用于支持高风险的决策,这是由于其相对于人类评估的优势预测能力的承诺而欠的趋势。但是,决策目标与观察到的作为训练ML模型的标签的结果中捕获的内容之间经常存在差距。结果,机器学习模型可能无法捕获决策标准的重要维度,从而阻碍了他们的决策支持。在这项工作中,我们探讨了历史专家决策作为组织信息系统中通常可用的丰富(但不完美)的信息来源,并表明它可以利用它来弥合决策目标与算法目标之间的差距。当数据中的每个案例都由单个专家评估并提出基于影响函数的方法作为解决此问题的解决方案时,我们会间接考虑估计专家一致性的问题。然后,我们将估计的专家一致性通过培训时间标签合并方法纳入预测模型。这种方法使ML模型可以在有推断的专家一致性和观察标签的情况下向专家学习。我们还提出了通过混合和延期模型来利用推断一致性的替代方法。在我们的经验评估中,专注于儿童虐待热线筛查的背景下,我们表明(1)有一些高风险案例,其风险是专家考虑的,但在目标标签中没有完全捕获用于培训已部署模型和培训的目标标签(2)提出的方法可显着提高这些情况的精度。
translated by 谷歌翻译
算法公平吸引了机器学习社区越来越多的关注。文献中提出了各种定义,但是它们之间的差异和联系并未清楚地解决。在本文中,我们回顾并反思了机器学习文献中先前提出的各种公平概念,并试图与道德和政治哲学,尤其是正义理论的论点建立联系。我们还从动态的角度考虑了公平的询问,并进一步考虑了当前预测和决策引起的长期影响。鉴于特征公平性的差异,我们提出了一个流程图,该流程图包括对数据生成过程,预测结果和诱导的影响的不同类型的公平询问的隐式假设和预期结果。本文展示了与任务相匹配的重要性(人们希望执行哪种公平性)和实现预期目的的手段(公平分析的范围是什么,什么是适当的分析计划)。
translated by 谷歌翻译
公平性是确保机器学习(ML)预测系统不会歧视特定个人或整个子人群(尤其是少数族裔)的重要要求。鉴于观察公平概念的固有主观性,文献中已经引入了几种公平概念。本文是一项调查,说明了通过大量示例和场景之间的公平概念之间的微妙之处。此外,与文献中的其他调查不同,它解决了以下问题:哪种公平概念最适合给定的现实世界情景,为什么?我们试图回答这个问题的尝试包括(1)确定手头现实世界情景的一组与公平相关的特征,(2)分析每个公平概念的行为,然后(3)适合这两个元素以推荐每个特定设置中最合适的公平概念。结果总结在决策图中可以由从业者和政策制定者使用,以导航相对较大的ML目录。
translated by 谷歌翻译
本文总结并评估了追求人工智能(AI)系统公平性的各种方法,方法和技术。它检查了这些措施的优点和缺点,并提出了定义,测量和防止AI偏见的实际准则。特别是,它警告了一些简单而常见的方法来评估AI系统中的偏见,并提供更复杂和有效的替代方法。该论文还通过在高影响力AI系统的不同利益相关者之间提供通用语言来解决该领域的广泛争议和困惑。它描述了涉及AI公平的各种权衡,并提供了平衡它们的实用建议。它提供了评估公平目标成本和收益的技术,并定义了人类判断在设定这些目标中的作用。本文为AI从业者,组织领导者和政策制定者提供了讨论和指南,以及针对更多技术受众的其他材料的各种链接。提供了许多现实世界的例子,以从实际角度阐明概念,挑战和建议。
translated by 谷歌翻译
Xenophobia is one of the key drivers of marginalisation, discrimination, and conflict, yet many prominent machine learning (ML) fairness frameworks fail to comprehensively measure or mitigate the resulting xenophobic harms. Here we aim to bridge this conceptual gap and help facilitate safe and ethical design of artificial intelligence (AI) solutions. We ground our analysis of the impact of xenophobia by first identifying distinct types of xenophobic harms, and then applying this framework across a number of prominent AI application domains, reviewing the potential interplay between AI and xenophobia on social media and recommendation systems, healthcare, immigration, employment, as well as biases in large pre-trained models. These help inform our recommendations towards an inclusive, xenophilic design of future AI systems.
translated by 谷歌翻译
教育技术,以及他们部署的学校教育系统,制定了特定的意识形态,了解有关知识的重要事项以及学习者应该如何学习。作为人工智能技术 - 在教育和超越 - 可能导致边缘社区的不公平结果,已经制定了各种方法来评估和减轻AI的有害影响。然而,我们争辩于本文认为,在AI模型中的性能差异的基础上评估公平的主导范式是面对教育AI系统(RE)生产的系统性不公平。我们在批判理论和黑色女权主义奖学金中汲取了结构性不公正的镜头,以批判性地审查了几个普遍研究的和广泛采用的教育AI类别,并探讨了他们如何融入和重现结构不公正和不公平的历史遗产和不公平的历史遗产。他们模型绩效的奇偶阶段。我们关闭了替代愿景,为教育ai提供更公平的未来。
translated by 谷歌翻译
Despite being responsible for state-of-the-art results in several computer vision and natural language processing tasks, neural networks have faced harsh criticism due to some of their current shortcomings. One of them is that neural networks are correlation machines prone to model biases within the data instead of focusing on actual useful causal relationships. This problem is particularly serious in application domains affected by aspects such as race, gender, and age. To prevent models from incurring on unfair decision-making, the AI community has concentrated efforts in correcting algorithmic biases, giving rise to the research area now widely known as fairness in AI. In this survey paper, we provide an in-depth overview of the main debiasing methods for fairness-aware neural networks in the context of vision and language research. We propose a novel taxonomy to better organize the literature on debiasing methods for fairness, and we discuss the current challenges, trends, and important future work directions for the interested researcher and practitioner.
translated by 谷歌翻译
作为一种预测模型的评分系统具有可解释性和透明度的显着优势,并有助于快速决策。因此,评分系统已广泛用于各种行业,如医疗保健和刑事司法。然而,这些模型中的公平问题长期以来一直受到批评,并且使用大数据和机器学习算法在评分系统的构建中提高了这个问题。在本文中,我们提出了一般框架来创建公平知识,数据驱动评分系统。首先,我们开发一个社会福利功能,融入了效率和群体公平。然后,我们将社会福利最大化问题转换为机器学习中的风险最小化任务,并在混合整数编程的帮助下导出了公平感知评分系统。最后,导出了几种理论界限用于提供参数选择建议。我们拟议的框架提供了适当的解决方案,以解决进程中的分组公平问题。它使政策制定者能够设置和定制其所需的公平要求以及其他特定于应用程序的约束。我们用几个经验数据集测试所提出的算法。实验证据支持拟议的评分制度在实现利益攸关方的最佳福利以及平衡可解释性,公平性和效率的需求方面的有效性。
translated by 谷歌翻译
值得信赖的人工智能(AI)已成为一个重要的话题,因为在AI系统及其创造者中的信任已经丢失。研究人员,公司和政府具有远离技术开发,部署和监督的边缘化群体的长期和痛苦的历史。结果,这些技术对小群体的有用甚至有害。我们争辩说,渴望信任的任何AI开发,部署和监测框架必须纳入女权主义,非剥削参与性设计原则和强大,外部和持续监测和测试。我们还向考虑到透明度,公平性和问责制的可靠性方面的重要性,特别是考虑对任何值得信赖的AI系统的核心价值观的正义和转移权力。创建值得信赖的AI通过资金,支持和赋予Grassroots组织,如AI Queer等基层组织开始,因此AI领域具有多样性和纳入可信和有效地发展的可信赖AI。我们利用AI的专家知识Queer通过其多年的工作和宣传来讨论以及如何以及如何在数据集和AI系统中使用如何以及如何在数据集和AI系统中使用以及沿着这些线路的危害。基于此,我们分享了对AI的性别方法,进一步提出了Queer认识论并分析它可以带来AI的好处。我们还讨论了如何在愿景中讨论如何使用此Queer认识论,提出与AI和性别多样性和隐私和酷儿数据保护相关的框架。
translated by 谷歌翻译
人们对算法偏见风险的认识越来越多,促进了围绕偏见缓解策略的努力。大多数提议的方法都属于两个类别之一:(1)对预测模型施加算法公平限制,以及(2)收集其他培训样本。最近以及在这两个类别的交集中,已经开发了在公平限制下提出主动学习的方法。但是,提出的缓解策略通常忽略了观察到的标签中呈现的偏差。在这项工作中,我们研究了在有标签偏见的情况下对主动数据收集策略的公平考虑。我们首先概述了在监督学习系统的背景下,不同类型的标签偏差。然后,我们从经验上表明,当忽略标签偏差时,收集更多数据会加剧偏见,并施加依赖数据收集过程中观察到的标签的公平约束可能无法解决问题。我们的结果说明了部署试图减轻单一类型偏见的模型的意外后果数据收集期间的偏差。
translated by 谷歌翻译
随着全球人口越来越多的人口驱动世界各地的快速城市化,有很大的需要蓄意审议值得生活的未来。特别是,随着现代智能城市拥抱越来越多的数据驱动的人工智能服务,值得记住技术可以促进繁荣,福祉,城市居住能力或社会正义,而是只有当它具有正确的模拟补充时(例如竭尽全力,成熟机构,负责任治理);这些智能城市的最终目标是促进和提高人类福利和社会繁荣。研究人员表明,各种技术商业模式和特征实际上可以有助于极端主义,极化,错误信息和互联网成瘾等社会问题。鉴于这些观察,解决了确保了诸如未来城市技术基岩的安全,安全和可解释性的哲学和道德问题,以为未来城市的技术基岩具有至关重要的。在全球范围内,有能够更加人性化和以人为本的技术。在本文中,我们分析和探索了在人以人为本的应用中成功部署AI的安全,鲁棒性,可解释性和道德(数据和算法)挑战的关键挑战,特别强调这些概念/挑战的融合。我们对这些关键挑战提供了对现有文献的详细审查,并分析了这些挑战中的一个可能导致他人的挑战方式或帮助解决其他挑战。本文还建议了这些域的当前限制,陷阱和未来研究方向,以及如何填补当前的空白并导致更好的解决方案。我们认为,这种严谨的分析将为域名的未来研究提供基准。
translated by 谷歌翻译
部署的AI系统通常不起作用。它们可以随意地构造,不加选择地部署并欺骗性地促进。然而,尽管有这一现实,但学者,新闻界和决策者对功能的关注很少。这导致技术和政策解决方案的重点是“道德”或价值一致的部署,通常会跳过先前的问题,即给定系统功能或完全提供任何好处。描述各种功能失败的危害,我们分析一组案例研究,以创建已知的AI功能问题的分类法。然后,我们指出的是政策和组织响应,这些策略和组织响应经常被忽略,并在功能成为重点后变得更容易获得。我们认为功能是一项有意义的AI政策挑战,是保护受影响社区免受算法伤害的必要第一步。
translated by 谷歌翻译
这项工作旨在将有效性考虑到有关是否以及如何在高风险域中构建数据驱动算法的审议。为此,我们将关键概念从有效性理论转化为预测算法。我们描述了问题制定和数据问题中的共同挑战,这些问题危害了预测算法的有效性。我们将这些问题提炼成一系列高级问题,旨在促进和记录有关预测任务和数据适用性的合法性的思考。这项贡献为共同设计有效性协议的基础与现实世界中的利益相关者合作,包括决策者,建模者和潜在影响社区的成员,以严格评估数据驱动的算法的特定设计的合理性和使用系统。
translated by 谷歌翻译
受益于医疗保健数据的数字化和计算能力的发展,机器学习方法越来越多地用于医疗领域。在医疗保健机器学习中已经确定了公平性问题,导致对有限医疗资源的不公平分配或某些群体的健康风险过多。因此,解决公平问题最近引起了医疗保健社区的越来越多的关注。然而,机器学习的机器学习与机器学习中的公平性的交集仍在研究中。在这篇综述中,我们通过暴露公平问题,总结可能的偏见,整理缓解方法并指出挑战以及未来的机会来建立桥梁。
translated by 谷歌翻译
本文确定了数据驱动系统中的数据最小化和目的限制的两个核心数据保护原理。虽然当代数据处理实践似乎与这些原则的赔率达到差异,但我们证明系统可以在技术上使用的数据远远少于目前的数据。此观察是我们详细的技术法律分析的起点,揭示了妨碍了妨碍了实现的障碍,并举例说明了在实践中应用数据保护法的意外权衡。我们的分析旨在向辩论提供关于数据保护对欧盟人工智能发展的影响,为数据控制员,监管机构和研究人员提供实际行动点。
translated by 谷歌翻译
人工智能(AI)继续在金融服务业中寻找更多众多,更关键的应用,引起公平和道德的AI作为一种行业范围的目标。虽然近年来,许多道德原则和准则已经出版,但他们缺乏解决建立道德AI解决方案时开发商面临的严重挑战。我们调查了围绕模型开发的实用和总体问题,从设计和实施复杂,缺乏工具,缺乏组织结构。我们展示了实际考虑如何揭示高级原则和混凝土之间的差距,部署AI应用,目的是从行业范围的对话谈论解决方案方法。
translated by 谷歌翻译