机器学习模型在高赌注应用中变得普遍存在。尽管在绩效方面有明显的效益,但该模型可以表现出对少数民族群体的偏见,并导致决策过程中的公平问题,导致对个人和社会的严重负面影响。近年来,已经开发了各种技术来减轻机器学习模型的偏差。其中,加工方法已经增加了社区的关注,在模型设计期间直接考虑公平,以诱导本质上公平的模型,从根本上减轻了产出和陈述中的公平问题。在本调查中,我们审查了加工偏置减缓技术的当前进展。基于在模型中实现公平的地方,我们将它们分类为明确和隐性的方法,前者直接在培训目标中纳入公平度量,后者重点介绍精炼潜在代表学习。最后,我们在讨论该社区中的研究挑战来讨论调查,以激励未来的探索。
translated by 谷歌翻译
Despite being responsible for state-of-the-art results in several computer vision and natural language processing tasks, neural networks have faced harsh criticism due to some of their current shortcomings. One of them is that neural networks are correlation machines prone to model biases within the data instead of focusing on actual useful causal relationships. This problem is particularly serious in application domains affected by aspects such as race, gender, and age. To prevent models from incurring on unfair decision-making, the AI community has concentrated efforts in correcting algorithmic biases, giving rise to the research area now widely known as fairness in AI. In this survey paper, we provide an in-depth overview of the main debiasing methods for fairness-aware neural networks in the context of vision and language research. We propose a novel taxonomy to better organize the literature on debiasing methods for fairness, and we discuss the current challenges, trends, and important future work directions for the interested researcher and practitioner.
translated by 谷歌翻译
受益于医疗保健数据的数字化和计算能力的发展,机器学习方法越来越多地用于医疗领域。在医疗保健机器学习中已经确定了公平性问题,导致对有限医疗资源的不公平分配或某些群体的健康风险过多。因此,解决公平问题最近引起了医疗保健社区的越来越多的关注。然而,机器学习的机器学习与机器学习中的公平性的交集仍在研究中。在这篇综述中,我们通过暴露公平问题,总结可能的偏见,整理缓解方法并指出挑战以及未来的机会来建立桥梁。
translated by 谷歌翻译
分类,一种重大研究的数据驱动机器学习任务,驱动越来越多的预测系统,涉及批准的人类决策,如贷款批准和犯罪风险评估。然而,分类器经常展示歧视性行为,特别是当呈现有偏置数据时。因此,分类公平已经成为一个高优先级的研究区。数据管理研究显示与数据和算法公平有关的主题的增加和兴趣,包括公平分类的主题。公平分类的跨学科努力,具有最大存在的机器学习研究,导致大量的公平概念和尚未系统地评估和比较的广泛方法。在本文中,我们对13个公平分类方法和额外变种的广泛分析,超越,公平,公平,效率,可扩展性,对数据误差的鲁棒性,对潜在的ML模型,数据效率和使用各种指标的稳定性的敏感性和稳定性现实世界数据集。我们的分析突出了对不同指标的影响的新颖见解和高级方法特征对不同方面的性能方面。我们还讨论了选择适合不同实际设置的方法的一般原则,并确定以数据管理为中心的解决方案可能产生最大影响的区域。
translated by 谷歌翻译
公平性是确保机器学习(ML)预测系统不会歧视特定个人或整个子人群(尤其是少数族裔)的重要要求。鉴于观察公平概念的固有主观性,文献中已经引入了几种公平概念。本文是一项调查,说明了通过大量示例和场景之间的公平概念之间的微妙之处。此外,与文献中的其他调查不同,它解决了以下问题:哪种公平概念最适合给定的现实世界情景,为什么?我们试图回答这个问题的尝试包括(1)确定手头现实世界情景的一组与公平相关的特征,(2)分析每个公平概念的行为,然后(3)适合这两个元素以推荐每个特定设置中最合适的公平概念。结果总结在决策图中可以由从业者和政策制定者使用,以导航相对较大的ML目录。
translated by 谷歌翻译
Recommender systems can strongly influence which information we see online, e.g., on social media, and thus impact our beliefs, decisions, and actions. At the same time, these systems can create substantial business value for different stakeholders. Given the growing potential impact of such AI-based systems on individuals, organizations, and society, questions of fairness have gained increased attention in recent years. However, research on fairness in recommender systems is still a developing area. In this survey, we first review the fundamental concepts and notions of fairness that were put forward in the area in the recent past. Afterward, through a review of more than 150 scholarly publications, we present an overview of how research in this field is currently operationalized, e.g., in terms of general research methodology, fairness measures, and algorithmic approaches. Overall, our analysis of recent works points to specific research gaps. In particular, we find that in many research works in computer science, very abstract problem operationalizations are prevalent, and questions of the underlying normative claims and what represents a fair recommendation in the context of a given application are often not discussed in depth. These observations call for more interdisciplinary research to address fairness in recommendation in a more comprehensive and impactful manner.
translated by 谷歌翻译
At the core of insurance business lies classification between risky and non-risky insureds, actuarial fairness meaning that risky insureds should contribute more and pay a higher premium than non-risky or less-risky ones. Actuaries, therefore, use econometric or machine learning techniques to classify, but the distinction between a fair actuarial classification and "discrimination" is subtle. For this reason, there is a growing interest about fairness and discrimination in the actuarial community Lindholm, Richman, Tsanakas, and Wuthrich (2022). Presumably, non-sensitive characteristics can serve as substitutes or proxies for protected attributes. For example, the color and model of a car, combined with the driver's occupation, may lead to an undesirable gender bias in the prediction of car insurance prices. Surprisingly, we will show that debiasing the predictor alone may be insufficient to maintain adequate accuracy (1). Indeed, the traditional pricing model is currently built in a two-stage structure that considers many potentially biased components such as car or geographic risks. We will show that this traditional structure has significant limitations in achieving fairness. For this reason, we have developed a novel pricing model approach. Recently some approaches have Blier-Wong, Cossette, Lamontagne, and Marceau (2021); Wuthrich and Merz (2021) shown the value of autoencoders in pricing. In this paper, we will show that (2) this can be generalized to multiple pricing factors (geographic, car type), (3) it perfectly adapted for a fairness context (since it allows to debias the set of pricing components): We extend this main idea to a general framework in which a single whole pricing model is trained by generating the geographic and car pricing components needed to predict the pure premium while mitigating the unwanted bias according to the desired metric.
translated by 谷歌翻译
Algorithmic fairness is becoming increasingly important in data mining and machine learning. Among others, a foundational notation is group fairness. The vast majority of the existing works on group fairness, with a few exceptions, primarily focus on debiasing with respect to a single sensitive attribute, despite the fact that the co-existence of multiple sensitive attributes (e.g., gender, race, marital status, etc.) in the real-world is commonplace. As such, methods that can ensure a fair learning outcome with respect to all sensitive attributes of concern simultaneously need to be developed. In this paper, we study the problem of information-theoretic intersectional fairness (InfoFair), where statistical parity, a representative group fairness measure, is guaranteed among demographic groups formed by multiple sensitive attributes of interest. We formulate it as a mutual information minimization problem and propose a generic end-to-end algorithmic framework to solve it. The key idea is to leverage a variational representation of mutual information, which considers the variational distribution between learning outcomes and sensitive attributes, as well as the density ratio between the variational and the original distributions. Our proposed framework is generalizable to many different settings, including other statistical notions of fairness, and could handle any type of learning task equipped with a gradient-based optimizer. Empirical evaluations in the fair classification task on three real-world datasets demonstrate that our proposed framework can effectively debias the classification results with minimal impact to the classification accuracy.
translated by 谷歌翻译
业务分析(BA)的广泛采用带来了财务收益和提高效率。但是,当BA以公正的影响为决定时,这些进步同时引起了人们对法律和道德挑战的不断增加。作为对这些关注的回应,对算法公平性的新兴研究涉及算法输出,这些算法可能会导致不同的结果或其他形式的对人群亚组的不公正现象,尤其是那些在历史上被边缘化的人。公平性是根据法律合规,社会责任和效用是相关的;如果不充分和系统地解决,不公平的BA系统可能会导致社会危害,也可能威胁到组织自己的生存,其竞争力和整体绩效。本文提供了有关算法公平的前瞻性,注重BA的评论。我们首先回顾有关偏见来源和措施的最新研究以及偏见缓解算法。然后,我们对公用事业关系的详细讨论进行了详细的讨论,强调经常假设这两种构造之间经常是错误的或短视的。最后,我们通过确定企业学者解决有效和负责任的BA的关键的有影响力的公开挑战的机会来绘制前进的道路。
translated by 谷歌翻译
软件2.0是软件工程的根本班次,机器学习成为新软件,由大数据和计算基础设施供电。因此,需要重新考虑软件工程,其中数据成为与代码相提并论的一流公民。一个引人注目的观察是,80-90%的机器学习过程都花在数据准备上。没有良好的数据,即使是最好的机器学习算法也不能表现良好。结果,以数据为中心的AI实践现在成为主流。不幸的是,现实世界中的许多数据集是小,肮脏,偏见,甚至中毒。在本调查中,我们研究了数据收集和数据质量的研究景观,主要用于深度学习应用。数据收集很重要,因为对于最近的深度学习方法,功能工程较小,而且需要大量数据。对于数据质量,我们研究数据验证和数据清洁技术。即使数据无法完全清洁,我们仍然可以应对模型培训期间的不完美数据,其中使用鲁棒模型培训技术。此外,虽然在传统数据管理研究中较少研究偏见和公平性,但这些问题成为现代机器学习应用中的重要主题。因此,我们研究了可以在模型培训之前,期间或之后应用的公平措施和不公平的缓解技术。我们相信数据管理界很好地解决了这些方向上的问题。
translated by 谷歌翻译
本文旨在改善多敏感属性的机器学习公平。自机学习软件越来越多地用于高赌注和高风险决策,机器学习公平吸引了越来越多的关注。大多数现有的机器学习公平解决方案一次只针对一个敏感的属性(例如性别),或者具有魔法参数来调整,或者具有昂贵的计算开销。为了克服这些挑战,我们在培训机器学习模型之前,我们建议平衡每种敏感属性的培训数据分布。我们的研究结果表明,在低计算开销的情况下,在低计算开销的情况下,Fairbalancy可以在每一个已知的敏感属性上显着减少公平度量(AOD,EOD和SPD),如果对预测性能有任何损坏,则可以在没有多大的情况下进行任何已知的敏感属性。此外,FairbalanceClass是非游价的变种,可以平衡培训数据中的班级分布。通过FairbalanceClass,预测将不再支持多数阶级,从而在少数阶级获得更高的F $ _1 $得分。 Fairbalance和FairbalanceClass还以预测性能和公平度量而言,在其他最先进的偏置缓解算法中也优于其他最先进的偏置缓解算法。本研究将通过提供一种简单但有效的方法来利用社会来改善具有多个敏感属性数据的机器学习软件的公平性。我们的结果还验证了在具有无偏见的地面真理标签上的数据集上的假设,学习模型中的道德偏置在很大程度上属于每个组内具有(2)类分布中的组大小和(2)差异的训练数据。
translated by 谷歌翻译
鉴于神经网络有区别,公平性改善的问题是系统地减少歧视,而不会显着削弱其性能(即准确性)。已经提出了针对神经网络的多种公平改进方法,包括预处理,处理和后处理。然而,我们的实证研究表明,这些方法并不总是有效的(例如,它们可以通过支付巨大准确性下降的价格来提高公平性),甚至没有帮助(例如,它们甚至可能使公平性和准确性都恶化)。在这项工作中,我们提出了一种基于因果分析的公平性改进方法的方法。也就是说,我们根据如何在输入属性和隐藏的神经元之间分布的神经元和属性如何选择方法。我们的实验评估表明,我们的方法是有效的(即,始终确定最佳的公平改善方法)和有效的效率(即,平均时间开销为5分钟)。
translated by 谷歌翻译
尽管机器学习模式的发展迅速和巨大成功,但广泛的研究暴露了继承潜在歧视和培训数据的社会偏见的缺点。这种现象阻碍了他们在高利益应用上采用。因此,已经采取了许多努力开发公平机器学习模型。其中大多数要求在培训期间提供敏感属性以学习公平的模型。然而,在许多现实世界应用中,由于隐私或法律问题,获得敏感的属性通常是不可行的,这挑战了现有的公平策略。虽然每个数据样本的敏感属性未知,但我们观察到训练数据中通常存在一些与敏感属性高度相关的非敏感功能,这可以用于缓解偏差。因此,在本文中,我们研究了一种探索与学习公平和准确分类器的敏感属性高度相关的特征的新问题。理论上我们通过最小化这些相关特征与模型预测之间的相关性,我们可以学习一个公平的分类器。基于这种动机,我们提出了一种新颖的框架,该框架同时使用这些相关的特征来准确预测和执行公平性。此外,该模型可以动态调整每个相关功能的正则化权重,以平衡其对模型分类和公平性的贡献。现实世界数据集的实验结果证明了拟议模型用于学习公平模型的效力,具有高分类准确性。
translated by 谷歌翻译
为了减轻模型中不希望的偏差的影响,几种方法建议预先处理输入数据集,以通过防止敏感属性的推断来减少歧视风险。不幸的是,这些预处理方法中的大多数导致一代新分布与原始分布有很大不同,因此通常导致不切实际的数据。作为副作用,这种新的数据分布意味着需要重新训练现有模型才能做出准确的预测。为了解决这个问题,我们提出了一种新颖的预处理方法,我们将根据保护组的分布转换为所选目标一个,并具有附加的隐私约束,其目的是防止敏感敏感的推断属性。更确切地说,我们利用Wasserstein Gan和Attgan框架的最新作品来实现数据点的最佳运输以及强制保护属性推断的歧视器。我们提出的方法可以保留数据的可解释性,并且可以在不定义敏感组的情况下使用。此外,我们的方法可以专门建模现有的最新方法,从而提出对这些方法的统一观点。最后,关于真实和合成数据集的一些实验表明,我们的方法能够隐藏敏感属性,同时限制数据的变形并改善了后续数据分析任务的公平性。
translated by 谷歌翻译
近年来,解决机器学习公平性(ML)和自动决策的问题引起了处理人工智能的科学社区的大量关注。已经提出了ML中的公平定义的一种不同的定义,认为不同概念是影响人口中个人的“公平决定”的不同概念。这些概念之间的精确差异,含义和“正交性”尚未在文献中完全分析。在这项工作中,我们试图在这个解释中汲取一些订单。
translated by 谷歌翻译
虽然传统的排名系统仅关注最大化排名项目的效用,但公平感知的排名系统另外尝试平衡不同保护属性(如性别或种族)的曝光。为了实现这种类型的排名,我们基于分布鲁棒性的第一个原则推导出新的排名系统。我们在选择分布的球员之间制定最小的游戏,以最大限度地提高实用程序,同时满足公平的限制,针对对攻击性匹配统计训练数据的统计数据来最小化实用性。我们表明,我们的方法提供比现有基线方法高度公平的排名更好的效用。
translated by 谷歌翻译
解决公平问题对于安全使用机器学习算法来支持对人们的生活产生关键影响的决策,例如雇用工作,儿童虐待,疾病诊断,贷款授予等。过去十年,例如统计奇偶校验和均衡的赔率。然而,最新的公平概念是基于因果关系的,反映了现在广泛接受的想法,即使用因果关系对于适当解决公平问题是必要的。本文研究了基于因果关系的公平概念的详尽清单,并研究了其在现实情况下的适用性。由于大多数基于因果关系的公平概念都是根据不可观察的数量(例如干预措施和反事实)来定义的,因此它们在实践中的部署需要使用观察数据来计算或估计这些数量。本文提供了有关从观察数据(包括可识别性(Pearl的SCM框架))和估计(潜在结果框架)中推断出因果量的不同方法的全面报告。该调查论文的主要贡献是(1)指南,旨在在特定的现实情况下帮助选择合适的公平概念,以及(2)根据Pearl的因果关系阶梯的公平概念的排名,表明它很难部署。实践中的每个概念。
translated by 谷歌翻译
由于越来越多的用户使用它们来寻求和决策,推荐制度对人类和社会的影响增加了对人类和社会的影响。因此,在建议中解决潜在的不公平问题至关重要。就像用户在物品上具有个性化的偏好,用户对公平性的要求也是个性化的许多情况。因此,为用户提供个性化的公平建议,以满足其个性化的公平需求。此外,以前的公平建议作品主要关注基于关联的公平性。但是,重要的是从联合公平概念前进,以便在推荐系统中更适当地评估公平性的因果公平概念。本文根据上述考虑,侧重于为推荐系统中的用户实现个性化的反事实公平。为此,我们介绍了一个框架,通过对建议产生特征 - 独立的用户嵌入来实现通过对抗学习来实现反转公平的建议。该框架允许推荐系统为用户实现个性化的公平,同时也涵盖非个性化情况。在浅层和深刻的推荐算法上的两个现实数据集的实验表明,我们的方法可以为具有理想的推荐性能的用户生成更公平的建议。
translated by 谷歌翻译
作为一种预测模型的评分系统具有可解释性和透明度的显着优势,并有助于快速决策。因此,评分系统已广泛用于各种行业,如医疗保健和刑事司法。然而,这些模型中的公平问题长期以来一直受到批评,并且使用大数据和机器学习算法在评分系统的构建中提高了这个问题。在本文中,我们提出了一般框架来创建公平知识,数据驱动评分系统。首先,我们开发一个社会福利功能,融入了效率和群体公平。然后,我们将社会福利最大化问题转换为机器学习中的风险最小化任务,并在混合整数编程的帮助下导出了公平感知评分系统。最后,导出了几种理论界限用于提供参数选择建议。我们拟议的框架提供了适当的解决方案,以解决进程中的分组公平问题。它使政策制定者能够设置和定制其所需的公平要求以及其他特定于应用程序的约束。我们用几个经验数据集测试所提出的算法。实验证据支持拟议的评分制度在实现利益攸关方的最佳福利以及平衡可解释性,公平性和效率的需求方面的有效性。
translated by 谷歌翻译
消除偏见的同时保留所有与任务相关的信息对于公平表示学习方法具有挑战性,因为它们会产生随机或退化表示w.r.t.当敏感属性与标签相关时,标记。现有的作品提议将标签信息注入学习程序以克服此类问题。但是,并不总是满足观察到的标签是清洁的假设。实际上,标签偏见被认为是引起歧视的主要来源。换句话说,公平的预处理方法忽略了在学习过程或评估阶段中标签中编码的歧视。这一矛盾给了学识渊博的表示的公平性。为了避免此问题,我们探讨了以下问题:\ emph {我们可以学习可预测的公平表示,可预测到仅访问不可靠标签的潜在理想公平标签吗?}在这项工作中,我们建议\ textbf {d} e- \ textbf { \ textbf {r} \ textbf {f} ernenses(dbrf)框架的b} iased \ textbf {r} ePresentation学习,该框架将敏感信息从非敏感属性中解散,同时使学习的表示形式可预测到理想的公平标签,而不是观察到的偏见。我们通过信息理论概念(例如相互信息和信息瓶颈)制定了偏见的学习框架。核心概念是,当敏感信息受益于不可靠标签的预测时,DBRF提倡不使用不可靠的标签进行监督。综合数据和现实世界数据的实验结果表明,DBRF有效地学习了对理想标签的偏见表示。
translated by 谷歌翻译