概括指向的最大祖先图形,我们介绍了一类图形模型,用于表示与未观察的变量的多变量时间序列的多变量时间序列的多变量的多种定样和定期分配时间步骤中的时间滞后特定因果关系和独立性。我们完全阐述了这些图表,并表明他们需要超出以前在文献中被考虑的那些的限制。这允许在没有强加的额外假设的情况下更强的因果推断。在指向部分祖先图的概括中,我们进一步介绍了新颖类型的图表的马尔可夫等同类的图形表示,并显示这些比当前最先进的因果发现算法学习的更具信息量。我们还通过增加观察时间步骤的数量来分析所获得的附加信息。
translated by 谷歌翻译
在观察性研究中,经常遇到有关存在或缺乏因果边缘和路径的因果背景知识。由于背景知识而导致的马尔可夫等效dag的子类共享的指向边缘和链接可以由因果关系最大部分定向的无循环图(MPDAG)表示。在本文中,我们首先提供了因果MPDAG的声音和完整的图形表征,并提供了因果MPDAG的最小表示。然后,我们介绍了一种名为Direct Causal子句(DCC)的新颖表示,以统一形式表示所有类型的因果背景知识。使用DCC,我们研究因果背景知识的一致性和等效性,并表明任何因果背景知识集都可以等效地分解为因果MPDAG,以及最小的残留DCC。还提供了多项式时间算法,以检查一致性,等效性并找到分解的MPDAG和残留DCC。最后,有了因果背景知识,我们证明了一个足够且必要的条件来识别因果关系,并且出人意料地发现因果效应的可识别性仅取决于分解的MPDAG。我们还开发了局部IDA型算法,以估计无法识别效应的可能值。模拟表明因果背景知识可以显着提高因果影响的识别性。
translated by 谷歌翻译
也称为(非参数)结构方程模型(SEMS)的结构因果模型(SCM)被广泛用于因果建模目的。特别是,也称为递归SEM的无循环SCMS,形成了一个研究的SCM的良好的子类,概括了因果贝叶斯网络来允许潜在混淆。在本文中,我们调查了更多普通环境中的SCM,允许存在潜在混杂器和周期。我们展示在存在周期中,无循环SCM的许多方便的性质通常不会持有:它们并不总是有解决方案;它们并不总是诱导独特的观察,介入和反事实分布;边缘化并不总是存在,如果存在边缘模型并不总是尊重潜在的投影;他们并不总是满足马尔可夫财产;他们的图表并不总是与他们的因果语义一致。我们证明,对于SCM一般,这些属性中的每一个都在某些可加工条件下保持。我们的工作概括了SCM的结果,迄今为止仅针对某些特殊情况所知的周期。我们介绍了将循环循环设置扩展到循环设置的简单SCM的类,同时保留了许多方便的无环SCM的性能。用本文,我们的目标是为SCM提供统计因果建模的一般理论的基础。
translated by 谷歌翻译
常用图是表示和可视化因果关系的。对于少量变量,这种方法提供了简洁和清晰的方案的视图。随着下属的变量数量增加,图形方法可能变得不切实际,并且表示的清晰度丢失。变量的聚类是减少因果图大小的自然方式,但如果任意实施,可能会错误地改变因果关系的基本属性。我们定义了一种特定类型的群集,称为Transit Cluster,保证在某些条件下保留因果效应的可识别性属性。我们提供了一种用于在给定图中查找所有传输群集的声音和完整的算法,并演示集群如何简化因果效应的识别。我们还研究了逆问题,其中一个人以群集的图形开始,寻找扩展图,其中因果效应的可识别性属性保持不变。我们表明这种结构稳健性与过境集群密切相关。
translated by 谷歌翻译
In this review, we discuss approaches for learning causal structure from data, also called causal discovery. In particular, we focus on approaches for learning directed acyclic graphs (DAGs) and various generalizations which allow for some variables to be unobserved in the available data. We devote special attention to two fundamental combinatorial aspects of causal structure learning. First, we discuss the structure of the search space over causal graphs. Second, we discuss the structure of equivalence classes over causal graphs, i.e., sets of graphs which represent what can be learned from observational data alone, and how these equivalence classes can be refined by adding interventional data.
translated by 谷歌翻译
我们考虑代表代理模型的问题,该模型使用我们称之为CSTREES的阶段树模型的适当子类对离散数据编码离散数据的原因模型。我们表明,可以通过集合表达CSTREE编码的上下文专用信息。由于并非所有阶段树模型都承认此属性,CSTREES是一个子类,可提供特定于上下文的因果信息的透明,直观和紧凑的表示。我们证明了CSTREEES承认全球性马尔可夫属性,它产生了模型等价的图形标准,概括了Verma和珍珠的DAG模型。这些结果延伸到一般介入模型设置,使CSTREES第一族的上下文专用模型允许介入模型等价的特征。我们还为CSTREE的最大似然估计器提供了一种封闭式公式,并使用它来表示贝叶斯信息标准是该模型类的本地一致的分数函数。在模拟和实际数据上分析了CSTHEELE的性能,在那里我们看到与CSTREELE而不是一般上演树的建模不会导致预测精度的显着损失,同时提供了特定于上下文的因果信息的DAG表示。
translated by 谷歌翻译
人们对利用置换推理来搜索定向的无环因果模型的方法越来越兴趣,包括Teysier和Kohler和Solus,Wang和Uhler的GSP的“订购搜索”。我们通过基于置换的操作Tuck扩展了后者的方法,并开发了一类算法,即掌握,这些算法在越来越弱的假设下比忠诚度更有效且方向保持一致。最放松的掌握形式优于模拟中许多最新的因果搜索算法,即使对于具有超过100个变量的密集图和图形,也可以有效,准确地搜索。
translated by 谷歌翻译
在原因指导的非循环图(DAG)的结构学习问题中出现的良好研究挑战是,使用观测数据,一个人只能将图形到“马尔可夫等价类”(MEC)。剩余的无向边缘必须使用干预率定向,这可以在应用中执行昂贵。因此,最小化了全面定向MEC所需的干预次数的问题已经得到了很多最近的关注,并且也是这项工作的重点。我们证明了两个主要结果。第一个是一种新的通用下限,在任何算法(无论是主动或被动)需要执行的原子干预次数,以便定向给定的MEC。我们的第二个结果表明,这一界限实际上是可以定位MEC的最小原子干预措施的两个大小的因素。我们的下限比以前已知的下限更好。我们的下限证明是基于CBSP订购的新概念,这是没有V-Surructure的DAG的拓扑排序,并满足某些特殊属性。此外,在综合图上使用模拟,并通过赋予特殊图家庭的示例,我们表明我们的界限往往明显更好。
translated by 谷歌翻译
In this paper we prove the so-called "Meek Conjecture". In particular, we show that if a DAG H is an independence map of another DAG G, then there exists a finite sequence of edge additions and covered edge reversals in G such that (1) after each edge modification H remains an independence map of G and ( 2) after all modifications G = H. As shown by Meek (1997), this result has an important consequence for Bayesian approaches to learning Bayesian networks from data: in the limit of large sample size, there exists a twophase greedy search algorithm that-when applied to a particular sparsely-connected search space-provably identifies a perfect map of the generative distribution if that perfect map is a DAG. We provide a new implementation of the search space, using equivalence classes as states, for which all operators used in the greedy search can be scored efficiently using local functions of the nodes in the domain. Finally, using both synthetic and real-world datasets, we demonstrate that the two-phase greedy approach leads to good solutions when learning with finite sample sizes.
translated by 谷歌翻译
研究了与隐藏变量有关的非循环图(DAG)相关的因果模型中因果效应的识别理论。然而,由于估计它们输出的识别功能的复杂性,因此未耗尽相应的算法。在这项工作中,我们弥合了识别和估算涉及单一治疗和单一结果的人口水平因果效应之间的差距。我们派生了基于功能的估计,在大类隐藏变量DAG中表现出对所识别的效果的双重稳健性,其中治疗满足简单的图形标准;该类包括模型,产生调整和前门功能作为特殊情况。我们还提供必要的和充分条件,其中隐藏变量DAG的统计模型是非分子饱和的,并且意味着对观察到的数据分布没有平等约束。此外,我们推导了一类重要的隐藏变量DAG,这意味着观察到观察到的数据分布等同于完全观察到的DAG等同于(最高的相等约束)。在这些DAG类中,我们推出了实现兴趣目标的半导体效率界限的估计估计值,该估计是治疗满足我们的图形标准的感兴趣的目标。最后,我们提供了一种完整的识别算法,可直接产生基于权重的估计策略,以了解隐藏可变因果模型中的任何可识别效果。
translated by 谷歌翻译
我们介绍并研究了分布的邻居晶格分解,这是有条件独立性的紧凑,非图形表示,在没有忠实的图形表示的情况下是有效的。这个想法是将变量的一组社区视为子集晶格,并将此晶格分配到凸sublattices中,每个晶格都直接编码有条件的独立关系集合。我们表明,这种分解存在于任何组成型绘画中,并且可以在高维度中有效且一致地计算出来。 {特别是,这给了一种方法来编码满足组合公理的分布所隐含的所有独立关系,该分布严格比图形方法通常假定的忠实假设弱弱。}我们还讨论了各种特殊案例,例如图形模型和投影晶格,每个晶格都有直观的解释。一路上,我们看到了这个问题与邻域回归密切相关的,该回归已在图形模型和结构方程式的背景下进行了广泛的研究。
translated by 谷歌翻译
我们考虑将贝叶斯网络表征到无条件等效的问题,即,当定向无环形图(DAGS)具有相同的无条件$ d $分离式语句。每个无条件的等效类(UEC)均以一个无方向的图形为唯一表示,其集团结构编码了类的成员。通过这种结构,我们提供了无条件对等的变革性表征。也就是说,我们证明当一个DAG在同一UEC中,并且仅当一个可以通过有限的指定移动序列转换为另一个DAG。我们还将此特征扩展到代表UEC中Markov等效类(MEC)的基本图。UEC分配了MEC的空间,并且可以从边际独立性测试中估算。因此,无条件等价的表征在涉及搜索贝叶斯网络空间的方法中应用。
translated by 谷歌翻译
D分隔标准通过某些条件独立性检测到关节概率分布与定向无环图的兼容性。在这项工作中,我们通过引入因果模型的分类定义,D分隔的分类概念,并证明了D-Exaration Criterion的抽象版本,从而在分类概率理论的背景下研究了这个问题。这种方法有两个主要好处。首先,分类D分隔是基于拓扑连接的非常直观的标准。其次,我们的结果适用于度量理论概率(具有标准的鲍尔空间),因此提供了与局部和全球马尔可夫属性等效性具有因果关系兼容性的简洁证明。
translated by 谷歌翻译
对表示形式的研究对于任何形式的交流都是至关重要的,我们有效利用它们的能力至关重要。本文介绍了一种新颖的理论 - 代表性系统理论 - 旨在从三个核心角度从三个核心角度进行抽象地编码各种表示:语法,综合及其属性。通过介绍建筑空间的概念,我们能够在一个统一的范式下编码这些核心组件中的每个核心组件。使用我们的代表性系统理论,有可能在结构上将一个系统中的表示形式转换为另一个系统的表示形式。我们结构转化技术的固有方面是根据表示的属性(例如它们的相对认知有效性或结构复杂性)的代表选择。提供一般结构转化技术的主要理论障碍是缺乏终止算法。代表系统理论允许在没有终止算法的情况下衍生部分变换。由于代表性系统理论提供了一种通用编码代表系统的通用方法,因此消除了进一步的关键障碍:需要设计特定于系统的结构转换算法,这是当不同系统采用不同的形式化方法时所必需的。因此,代表性系统理论是第一个提供统一方法来编码表示形式,通过结构转换支持表示形式的第一个通用框架,并具有广泛的实用应用。
translated by 谷歌翻译
公平的机器学习旨在避免基于\ textit {敏感属性}(例如性别和种族)对个人或子人群的治疗。公平机器学习中的那些方法是基于因果推理确定的歧视和偏见的。尽管基于因果关系的公平学习吸引了越来越多的关注,但当前的方法假设真正的因果图是完全已知的。本文提出了一种一般方法,以实现反事实公平的概念时,当真实的因果图未知。为了能够选择导致反事实公平性的功能,我们得出了条件和算法,以识别\ textit上变量之间的祖先关系{部分定向的无循环图(pdag)},具体来说,可以从一类可学到的dag中学到。观察数据与域知识相结合。有趣的是,我们发现可以实现反事实公平,就好像真正的因果图是完全知道的一样,当提供了特定的背景知识时:敏感属性在因果图中没有祖先。模拟和实际数据集的结果证明了我们方法的有效性。
translated by 谷歌翻译
有条件的独立性已被广泛用于AI,因果推理,机器学习和统计数据。我们介绍分类生物,这是一种代数结构,用于表征条件独立性的普遍特性。分类物被定义为两个类别的混合体:一个编码由对象和箭头定义的预订的晶格结构;第二个二个参数化涉及定义​​条件独立性结构的三角体对象和形态,桥梁形态提供了二进制和三元结构之间的接口。我们使用公理集的三个众所周知的示例来说明分类生物:绘画,整数价值多组和分离型。 FOUNDOROIDS将一个分类型映射到另一个分类,从而保留了由共同域中所有三种类型的箭头定义的关系。我们描述了跨官能素的自然转化,该函数是跨常规物体和三角形对象的自然变化,以构建条件独立性的通用表示。我们使用分类器之间的辅助和单核,以抽象地表征条件独立性的图形和非图形表示的忠诚。
translated by 谷歌翻译
Learning causal structure from observational data often assumes that we observe independent and identically distributed (i.\,i.\,d) data. The traditional approach aims to find a graphical representation that encodes the same set of conditional independence relationships as those present in the observed distribution. It is known that under i.\,i.\,d assumption, even with infinite data, there is a limit to how fine-grained a causal structure we can identify. To overcome this limitation, recent work has explored using data originating from different, related environments to learn richer causal structure. These approaches implicitly rely on the independent causal mechanisms (ICM) principle, which postulates that the mechanism giving rise to an effect given its causes and the mechanism which generates the causes do not inform or influence each other. Thus, components of the causal model can independently change from environment to environment. Despite its wide application in machine learning and causal inference, there is a lack of statistical formalization of the ICM principle and how it enables identification of richer causal structures from grouped data. Here we present new causal de Finetti theorems which offer a first statistical formalization of ICM principle and show how causal structure identification is possible from exchangeable data. Our work provides theoretical justification for a broad range of techniques leveraging multi-environment data to learn causal structure.
translated by 谷歌翻译
我们研究了在存在潜在变量存在下从数据重建因果图形模型的问题。感兴趣的主要问题是在潜在变量上恢复因果结构,同时允许一般,可能在变量之间的非线性依赖性。在许多实际问题中,原始观测之间的依赖性(例如,图像中的像素)的依赖性比某些高级潜在特征(例如概念或对象)之间的依赖性要小得多,这是感兴趣的设置。我们提供潜在表示和潜在潜在因果模型的条件可通过减少到混合甲骨文来识别。这些结果突出了学习混合模型的顺序的良好研究问题与观察到和解开的基础结构的问题之间的富裕问题之间的有趣连接。证明是建设性的,并导致几种算法用于明确重建全图形模型。我们讨论高效算法并提供说明实践中算法的实验。
translated by 谷歌翻译
Linear structural causal models (SCMs)-- in which each observed variable is generated by a subset of the other observed variables as well as a subset of the exogenous sources-- are pervasive in causal inference and casual discovery. However, for the task of causal discovery, existing work almost exclusively focus on the submodel where each observed variable is associated with a distinct source with non-zero variance. This results in the restriction that no observed variable can deterministically depend on other observed variables or latent confounders. In this paper, we extend the results on structure learning by focusing on a subclass of linear SCMs which do not have this property, i.e., models in which observed variables can be causally affected by any subset of the sources, and are allowed to be a deterministic function of other observed variables or latent confounders. This allows for a more realistic modeling of influence or information propagation in systems. We focus on the task of causal discovery form observational data generated from a member of this subclass. We derive a set of necessary and sufficient conditions for unique identifiability of the causal structure. To the best of our knowledge, this is the first work that gives identifiability results for causal discovery under both latent confounding and deterministic relationships. Further, we propose an algorithm for recovering the underlying causal structure when the aforementioned conditions are satisfied. We validate our theoretical results both on synthetic and real datasets.
translated by 谷歌翻译
我们研究了与从介入数据中恢复因果图有关的两个问题:(i)$ \ textIt {verification} $,其中的任务是检查声称的因果图是否正确,并且(ii)$ \ textit {search} $,任务是恢复正确的因果图。对于这两者,我们都希望最大程度地减少执行的干预措施的数量。对于第一个问题,我们给出了一组最小尺寸的原子干预措施的表征,这些干预措施是必要且足以检查所要求的因果图的正确性。我们的表征使用$ \ textit {coving edges} $的概念,这使我们能够获得简单的证据,并且很容易理解早期结果。我们还将结果推广到有限尺寸干预措施和节点依赖性干预成本的设置。对于上述所有设置,我们提供了第一种已知的可验证算法,用于有效地计算(接近)一般图上的最佳验证集。对于第二个问题,我们给出了一种基于图形分离器的简单自适应算法,该算法会产生一个原子干预集,该集合在使用$ \ MATHCAL {O}(\ log n)$ times $ times所需的$所需干预措施时,该算法完全围绕任何必需图表。 \ textIt {verify} $(验证大小)$ n $顶点上的基础dag。相对于验证大小而言,此近似值是紧密的,因为$ \ textit {any} $搜索算法的最差情况是$ \ omega(\ log n)$的最差情况。使用有限的大小干预措施,每个大小$ \ leq k $,我们的算法给出了$ \ mathcal {o}(\ log n \ cdot \ log \ log \ log k)$ factor actialation。我们的结果是第一种已知的算法,该算法对一般未加权图和有界尺寸干预的验证尺寸提供了非平凡的近似保证。
translated by 谷歌翻译