在计算机视觉的许多领域都探索了对对抗性扰动的鲁棒性。这种鲁棒性在基于视觉的强化学习中尤其重要,因为自主代理在现实世界中的行为可能是安全的或影响力的。我们研究基于视力的强化学习者对基于梯度的对抗攻击并评估潜在防御的敏感性。我们观察到,CNN体系结构中包含的瓶颈注意模块(BAM)可以充当提高对抗性攻击的鲁棒性的潜在工具。我们展示了如何使用学习的注意图来通过将空间激活限制为显着区域来恢复卷积层的激活。在许多RL环境中,BAM增强体系结构在推理过程中表现出更大的鲁棒性。最后,我们讨论潜在的未来研究方向。
translated by 谷歌翻译
最近的研究表明,深层增强学习剂容易受到代理投入的小对抗扰动,这提出了对在现实世界中部署这些药剂的担忧。为了解决这个问题,我们提出了一个主要的框架,是培训加强学习代理的主要框架,以改善鲁棒性,以防止$ L_P $ -NORM偏见的对抗性攻击。我们的框架与流行的深度加强学习算法兼容,我们用深Q学习,A3C和PPO展示了其性能。我们在三个深度RL基准(Atari,Mujoco和Procgen)上进行实验,以展示我们稳健的培训算法的有效性。我们的径向-RL代理始终如一地占据了不同强度的攻击时的现有方法,并且培训更加计算效率。此外,我们提出了一种新的评估方法,称为贪婪最坏情况奖励(GWC)来衡量深度RL代理商的攻击不良鲁棒性。我们表明GWC可以有效地评估,并且对最糟糕的对抗攻击序列是对奖励的良好估计。用于我们实验的所有代码可在https://github.com/tuomaso/radial_rl_v2上获得。
translated by 谷歌翻译
最近的工作表明,深增强学习(DRL)政策易受对抗扰动的影响。对手可以通过扰乱药剂观察到的环境来误导DRL代理商的政策。现有攻击原则上是可行的,但在实践中面临挑战,例如通过太慢,无法实时欺骗DRL政策。我们表明,使用通用的对冲扰动(UAP)方法来计算扰动,独立于应用它们的各个输入,可以有效地欺骗DRL策略。我们描述了三种这样的攻击变体。通过使用三个Atari 2600游戏的广泛评估,我们表明我们的攻击是有效的,因为它们完全降低了三种不同的DRL代理商的性能(高达100%,即使在扰乱的$ L_ infty $绑定时也很小为0.01)。与不同DRL策略的响应时间(平均0.6ms)相比,它比不同DRL策略的响应时间(0.6ms)更快,并且比使用对抗扰动的前攻击更快(平均1.8ms)。我们还表明,我们的攻击技术是高效的,平均地产生0.027ms的在线计算成本。使用涉及机器人运动的两个进一步任务,我们确认我们的结果概括了更复杂的DRL任务。此外,我们证明了已知防御的有效性降低了普遍扰动。我们提出了一种有效的技术,可检测针对DRL政策的所有已知的对抗性扰动,包括本文呈现的所有普遍扰动。
translated by 谷歌翻译
Deep Reinforcement Learning (RL) agents are susceptible to adversarial noise in their observations that can mislead their policies and decrease their performance. However, an adversary may be interested not only in decreasing the reward, but also in modifying specific temporal logic properties of the policy. This paper presents a metric that measures the exact impact of adversarial attacks against such properties. We use this metric to craft optimal adversarial attacks. Furthermore, we introduce a model checking method that allows us to verify the robustness of RL policies against adversarial attacks. Our empirical analysis confirms (1) the quality of our metric to craft adversarial attacks against temporal logic properties, and (2) that we are able to concisely assess a system's robustness against attacks.
translated by 谷歌翻译
增强学习的数据毒害历史上专注于一般性绩效退化,目标攻击已经通过扰动取得了成功,涉及控制受害者的政策和奖励。我们介绍了一个阴险的中毒攻误,用于加强学习,这只会在特定目标状态下引起代理人不端行为 - 所有的,而且在最小地修改小数一小部分的培训观察,而不假设任何控制政策或奖励。我们通过调整最近的技术,梯度对准来实现这一目标,以加强学习。我们测试我们的方法,并在两个Atari游戏中展示了不同困难的成功。
translated by 谷歌翻译
针对AI系统的对抗性例子通过恶意攻击和通过对抗性训练提高鲁棒性的机会构成了风险。在多种设置中,可以通过培训对抗代理以最大程度地减少受害者的奖励来制定对抗性政策。先前的工作研究了黑盒攻击,在这种攻击中,对手只看到州的观察结果,并有效地将受害者视为环境的任何其他部分。在这项工作中,我们实验白盒对抗性政策,以研究代理人的内部状态是否可以为其他代理提供有用的信息。我们做出三项贡献。首先,我们介绍了白盒对抗性政策,其中攻击者可以在每个时间步长观察受害者的内部状态。其次,我们证明了对受害者的白框访问可以在两种经纪环境中进行更好的攻击,从而导致对受害者的初始学习和更高的渐近表现。第三,我们表明,针对白盒对抗性策略的培训可用于使在单一环境中的学习者更强大,以使域转移更强大。
translated by 谷歌翻译
大多数强化学习算法隐含地假设强同步。我们提出了针对Q学习的新颖攻击,该攻击通过延迟有限时间段的奖励信号来利用该假设所带来的漏洞。我们考虑了两种类型的攻击目标:目标攻击,旨在使目标政策被学习,以及不靶向的攻击,这只是旨在诱使奖励低的政策。我们通过一系列实验评估了提出的攻击的功效。我们的第一个观察结果是,当目标仅仅是为了最大程度地减少奖励时,奖励延迟​​攻击非常有效。的确,我们发现即使是天真的基线奖励 - 延迟攻击也在最大程度地减少奖励方面也非常成功。另一方面,有针对性的攻击更具挑战性,尽管我们表明,提出的方法在实现攻击者的目标方面仍然非常有效。此外,我们引入了第二个威胁模型,该模型捕获了一种最小的缓解措施,该模型可确保不能超出顺序使用奖励。我们发现,这种缓解仍然不足以确保稳定性延迟但保留奖励的命令。
translated by 谷歌翻译
多智能经纪环境中的单代理强化学习算法不足以促进合作。如果智能代理商共同互动并共同努力解决复杂的问题,则需要计数器非合作行为的方法来促进多个代理的培训。这是合作AI的目标。然而,最近在对抗机器学习中的工作表明,模型(例如,图像分类器)可以很容易地欺骗制作不正确的决策。此外,在合作社的一些过去的研究依赖于陈述的新概念,如公共信仰,加快了解最佳合作行为的学习。因此,合作AI可能会引入以前的机器学习研究中未调查的新弱点。在本文中,我们的贡献包括:(1)争论由人类的社会情报启发的三种算法引入了新的漏洞,独一无二的合作益处,对手可以利用,并显示出对此简单,对抗的实验代理人的信念可能会产生负面影响。本证据表明了社会行为正式陈述的可能性易受对抗性袭击的影响。
translated by 谷歌翻译
Reinforcement learning (RL) is one of the most important branches of AI. Due to its capacity for self-adaption and decision-making in dynamic environments, reinforcement learning has been widely applied in multiple areas, such as healthcare, data markets, autonomous driving, and robotics. However, some of these applications and systems have been shown to be vulnerable to security or privacy attacks, resulting in unreliable or unstable services. A large number of studies have focused on these security and privacy problems in reinforcement learning. However, few surveys have provided a systematic review and comparison of existing problems and state-of-the-art solutions to keep up with the pace of emerging threats. Accordingly, we herein present such a comprehensive review to explain and summarize the challenges associated with security and privacy in reinforcement learning from a new perspective, namely that of the Markov Decision Process (MDP). In this survey, we first introduce the key concepts related to this area. Next, we cover the security and privacy issues linked to the state, action, environment, and reward function of the MDP process, respectively. We further highlight the special characteristics of security and privacy methodologies related to reinforcement learning. Finally, we discuss the possible future research directions within this area.
translated by 谷歌翻译
部署到现实世界的自主智能代理必须与对感官输入的对抗性攻击保持强大的态度。在加强学习中的现有工作集中于最小值扰动攻击,这些攻击最初是为了模仿计算机视觉中感知不变性的概念。在本文中,我们注意到,这种最小值扰动攻击可以由受害者琐碎地检测到,因为这些导致观察序列与受害者的行为不符。此外,许多现实世界中的代理商(例如物理机器人)通常在人类主管下运行,这些代理商不容易受到这种扰动攻击的影响。结果,我们建议专注于幻觉攻击,这是一种与受害者的世界模式一致的新型攻击形式。我们为这个新颖的攻击框架提供了正式的定义,在各种条件下探索了其特征,并得出结论,代理必须寻求现实主义反馈以对幻觉攻击具有强大的态度。
translated by 谷歌翻译
深增强学习模型容易受到对抗的攻击,可以通过操纵受害者的观察来减少受害者的累积预期奖励。尽管以前的优化基于优化的方法效率,用于在监督学习中产生对抗性噪声,因此这些方法可能无法实现最低的累积奖励,因为它们通常不会探索环境动态。在本文中,我们提供了一个框架,以通过重新制定函数空间中加固学习的对抗攻击问题来更好地了解现有方法。我们的重构在有针对性攻击的功能空间中产生最佳对手,通过通用的两级框架来排斥它们。在第一阶段,我们通过黑客攻击环境来培训欺骗性政策,并发现一组轨迹路由到最低奖励或最坏情况性能。接下来,对手误导受害者通过扰乱观察来模仿欺骗性政策。与现有方法相比,我们理论上表明我们的对手在适当的噪声水平下更强大。广泛的实验展示了我们在效率和效力方面的优越性,在Atari和Mujoco环境中实现了最先进的性能。
translated by 谷歌翻译
在国家观察中最强/最佳的对抗性扰动下评估增强学习(RL)代理的最坏情况性能(在某些限制内)对于理解RL代理商的鲁棒性至关重要。然而,在无论我们都能找到最佳攻击以及我们如何找到它,我们都可以找到最佳的对手是具有挑战性的。对普发拉利RL的现有工作要么使用基于启发式的方法,可以找不到最强大的对手,或者通过将代理人视为环境的一部分来说,直接培训基于RL的对手,这可以找到最佳的对手,但可能会变得棘手大状态空间。本文介绍了一种新的攻击方法,通过设计函数与名为“Director”的RL为基础的学习者的设计函数之间的合作找到最佳攻击。演员工艺在给定的政策扰动方向的状态扰动,主任学会提出最好的政策扰动方向。我们所提出的算法PA-AD,比具有大状态空间的环境中的基于RL的工作,理论上是最佳的,并且明显更有效。经验结果表明,我们建议的PA-AD普遍优惠各种Atari和Mujoco环境中最先进的攻击方法。通过将PA-AD应用于对抗性培训,我们在强烈的对手下实现了多个任务的最先进的经验稳健性。
translated by 谷歌翻译
传统的深度学习模型表现出有趣的脆弱性,使攻击者迫使他们失败的任务。诸如快速梯度标志法(FGSM)和更强大的投影梯度下降(PGD)的臭名昭着攻击通过增加扰动$ \ epsilon $对输入的计算梯度来产生对抗示例,导致效果恶化模型的分类。这项工作介绍了一个模型,这是对抗对抗攻击的有弹性。我们的模式利用生物科学的成熟原则:人口多样性会产生对环境变化的恢复力。更准确地说,我们的模型包括一群$ N $多样的子模型,每一个培训,以便在手头上单独获得高精度,而被迫在其体重张量方面保持有意义的差异。每次我们的模型都接收到分类查询时,它会随机从其人口中选择一个子模型以应答查询。为了引入和维持子模型人群的多样性,我们介绍了计数器连接权重的概念。对反相关的模型(CLM)由相同架构的子模型组成,其中在同时训练期间进行周期性随机相似度检查,以保证多样性,同时保持准确性。在我们的测试中,CLM稳健性在MNIST DataSet上测试时增强了大约20%,并且在CIFAR-10数据集上测试时至少为15%。当用普遍培训的子模型实施时,该方法实现了最先进的鲁棒性。在带有$ \ epsilon = 0.3 $的Mnist DataSet上,它可以针对FGSM实现94.34%,而对PGD为91%。在带有$ \ epsilon = 8/255 $的Cifar-10数据集上,它取得了62.97%,针对FGSM和59.16%的PGD。
translated by 谷歌翻译
Adversarial robustness assessment for video recognition models has raised concerns owing to their wide applications on safety-critical tasks. Compared with images, videos have much high dimension, which brings huge computational costs when generating adversarial videos. This is especially serious for the query-based black-box attacks where gradient estimation for the threat models is usually utilized, and high dimensions will lead to a large number of queries. To mitigate this issue, we propose to simultaneously eliminate the temporal and spatial redundancy within the video to achieve an effective and efficient gradient estimation on the reduced searching space, and thus query number could decrease. To implement this idea, we design the novel Adversarial spatial-temporal Focus (AstFocus) attack on videos, which performs attacks on the simultaneously focused key frames and key regions from the inter-frames and intra-frames in the video. AstFocus attack is based on the cooperative Multi-Agent Reinforcement Learning (MARL) framework. One agent is responsible for selecting key frames, and another agent is responsible for selecting key regions. These two agents are jointly trained by the common rewards received from the black-box threat models to perform a cooperative prediction. By continuously querying, the reduced searching space composed of key frames and key regions is becoming precise, and the whole query number becomes less than that on the original video. Extensive experiments on four mainstream video recognition models and three widely used action recognition datasets demonstrate that the proposed AstFocus attack outperforms the SOTA methods, which is prevenient in fooling rate, query number, time, and perturbation magnitude at the same.
translated by 谷歌翻译
This study provides a new understanding of the adversarial attack problem by examining the correlation between adversarial attack and visual attention change. In particular, we observed that: (1) images with incomplete attention regions are more vulnerable to adversarial attacks; and (2) successful adversarial attacks lead to deviated and scattered attention map. Accordingly, an attention-based adversarial defense framework is designed to simultaneously rectify the attention map for prediction and preserve the attention area between adversarial and original images. The problem of adding iteratively attacked samples is also discussed in the context of visual attention change. We hope the attention-related data analysis and defense solution in this study will shed some light on the mechanism behind the adversarial attack and also facilitate future adversarial defense/attack model design.
translated by 谷歌翻译
沟通对于代理人共享信息并做出良好决定的许多多代理强化学习(MARL)问题很重要。但是,当在存在噪音和潜在攻击者的现实应用程序中部署训练有素的交流代理商时,基于沟通的政策的安全就会成为一个严重的问题,这些问题被忽视。具体而言,如果通过恶意攻击者操纵沟通信息,依靠不信任的交流的代理可能会采取不安全的行动,从而导致灾难性后果。因此,至关重要的是要确保代理人不会被腐败的沟通误导,同时仍然从良性的交流中受益。在这项工作中,我们考虑了一个具有$ n $代理的环境,攻击者可以任意将通信从任何$ c <\ frac {n-1} {2} $代理商转换为受害者代理。对于这种强大的威胁模型,我们通过构建一个消息集结策略来提出可认证的辩护,该策略汇总了多个随机消融的消息集。理论分析表明,这种消息安装策略可以利用良性通信,同时确保对对抗性交流,无论攻击算法如何。在多种环境中的实验证明,我们的防御能够显着改善受过训练的政策对各种攻击的鲁棒性。
translated by 谷歌翻译
对抗性训练(AT)是针对对抗分类系统的对抗性攻击的简单而有效的防御,这是基于增强训练设置的攻击,从而最大程度地提高了损失。但是,AT作为视频分类的辩护的有效性尚未得到彻底研究。我们的第一个贡献是表明,为视频生成最佳攻击需要仔细调整攻击参数,尤其是步骤大小。值得注意的是,我们证明最佳步长随攻击预算线性变化。我们的第二个贡献是表明,在训练时间使用较小(次优的)攻击预算会导致测试时的性能更加强大。根据这些发现,我们提出了三个防御攻击预算的攻击的防御。自适应AT的第一个技术是一种技术,该技术是从随着训练迭代进行的。第二个课程是一项技术,随着训练的迭代进行,攻击预算的增加。第三个生成的AT,与deno的生成对抗网络一起,以提高稳健的性能。 UCF101数据集上的实验表明,所提出的方法改善了针对多种攻击类型的对抗性鲁棒性。
translated by 谷歌翻译
The authors thank Nicholas Carlini (UC Berkeley) and Dimitris Tsipras (MIT) for feedback to improve the survey quality. We also acknowledge X. Huang (Uni. Liverpool), K. R. Reddy (IISC), E. Valle (UNICAMP), Y. Yoo (CLAIR) and others for providing pointers to make the survey more comprehensive.
translated by 谷歌翻译
人类严重依赖于形状信息来识别对象。相反,卷积神经网络(CNNS)偏向于纹理。这也许是CNNS易受对抗性示例的影响的主要原因。在这里,我们探索如何将偏差纳入CNN,以提高其鲁棒性。提出了两种算法,基于边缘不变,以中等难以察觉的扰动。在第一个中,分类器在具有边缘图作为附加信道的图像上进行前列地培训。在推断时间,边缘映射被重新计算并连接到图像。在第二算法中,训练了条件GaN,以将边缘映射从干净和/或扰动图像转换为清洁图像。推断在与输入的边缘图对应的生成图像上完成。超过10个数据集的广泛实验证明了算法对FGSM和$ \ ELL_ infty $ PGD-40攻击的有效性。此外,我们表明a)边缘信息还可以使其他对抗训练方法有益,并且B)在边缘增强输入上培训的CNNS对抗自然图像损坏,例如运动模糊,脉冲噪声和JPEG压缩,而不是仅培训的CNNS RGB图像。从更广泛的角度来看,我们的研究表明,CNN不会充分占对鲁棒性至关重要的图像结构。代码可用:〜\ url {https://github.com/aliborji/shapedefense.git}。
translated by 谷歌翻译
Adversarial attacks to image classification systems present challenges to convolutional networks and opportunities for understanding them. This study suggests that adversarial perturbations on images lead to noise in the features constructed by these networks. Motivated by this observation, we develop new network architectures that increase adversarial robustness by performing feature denoising. Specifically, our networks contain blocks that denoise the features using non-local means or other filters; the entire networks are trained end-to-end. When combined with adversarial training, our feature denoising networks substantially improve the state-of-the-art in adversarial robustness in both white-box and black-box attack settings. On ImageNet, under 10-iteration PGD white-box attacks where prior art has 27.9% accuracy, our method achieves 55.7%; even under extreme 2000-iteration PGD white-box attacks, our method secures 42.6% accuracy. Our method was ranked first in Competition on Adversarial Attacks and Defenses (CAAD) 2018 -it achieved 50.6% classification accuracy on a secret, ImageNet-like test dataset against 48 unknown attackers, surpassing the runner-up approach by ∼10%. Code is available at https://github.com/facebookresearch/ ImageNet-Adversarial-Training.
translated by 谷歌翻译