This study provides a new understanding of the adversarial attack problem by examining the correlation between adversarial attack and visual attention change. In particular, we observed that: (1) images with incomplete attention regions are more vulnerable to adversarial attacks; and (2) successful adversarial attacks lead to deviated and scattered attention map. Accordingly, an attention-based adversarial defense framework is designed to simultaneously rectify the attention map for prediction and preserve the attention area between adversarial and original images. The problem of adding iteratively attacked samples is also discussed in the context of visual attention change. We hope the attention-related data analysis and defense solution in this study will shed some light on the mechanism behind the adversarial attack and also facilitate future adversarial defense/attack model design.
translated by 谷歌翻译
有必要提高某些特殊班级的表现,或者特别保护它们免受对抗学习的攻击。本文提出了一个将成本敏感分类和对抗性学习结合在一起的框架,以训练可以区分受保护和未受保护的类的模型,以使受保护的类别不太容易受到对抗性示例的影响。在此框架中,我们发现在训练深神经网络(称为Min-Max属性)期间,一个有趣的现象,即卷积层中大多数参数的绝对值。基于这种最小的最大属性,该属性是在随机分布的角度制定和分析的,我们进一步建立了一个针对对抗性示例的新防御模型,以改善对抗性鲁棒性。构建模型的一个优点是,它的性能比标准模型更好,并且可以与对抗性训练相结合,以提高性能。在实验上证实,对于所有类别的平均准确性,我们的模型在没有发生攻击时几乎与现有模型一样,并且在发生攻击时比现有模型更好。具体而言,关于受保护类的准确性,提议的模型比发生攻击时的现有模型要好得多。
translated by 谷歌翻译
在本文中,我们提出了一种防御策略,以通过合并隐藏的层表示来改善对抗性鲁棒性。这种防御策略的关键旨在压缩或过滤输入信息,包括对抗扰动。而且这种防御策略可以被视为一种激活函数,可以应用于任何类型的神经网络。从理论上讲,我们在某些条件下也证明了这种防御策略的有效性。此外,合并隐藏层表示,我们提出了三种类型的对抗攻击,分别生成三种类型的对抗示例。实验表明,我们的防御方法可以显着改善深神经网络的对抗性鲁棒性,即使我们不采用对抗性训练,也可以实现最新的表现。
translated by 谷歌翻译
已知深度神经网络(DNN)容易受到用不可察觉的扰动制作的对抗性示例的影响,即,输入图像的微小变化会引起错误的分类,从而威胁着基于深度学习的部署系统的可靠性。经常采用对抗训练(AT)来通过训练损坏和干净的数据的混合物来提高DNN的鲁棒性。但是,大多数基于AT的方法在处理\ textit {转移的对抗示例}方面是无效的,这些方法是生成以欺骗各种防御模型的生成的,因此无法满足现实情况下提出的概括要求。此外,对抗性训练一般的国防模型不能对具有扰动的输入产生可解释的预测,而不同的领域专家则需要一个高度可解释的强大模型才能了解DNN的行为。在这项工作中,我们提出了一种基于Jacobian规范和选择性输入梯度正则化(J-SIGR)的方法,该方法通过Jacobian归一化提出了线性化的鲁棒性,还将基于扰动的显着性图正规化,以模仿模型的可解释预测。因此,我们既可以提高DNN的防御能力和高解释性。最后,我们评估了跨不同体系结构的方法,以针对强大的对抗性攻击。实验表明,提出的J-Sigr赋予了针对转移的对抗攻击的鲁棒性,我们还表明,来自神经网络的预测易于解释。
translated by 谷歌翻译
对抗性训练(AT)已被证明可以通过利用对抗性示例进行训练来有效地改善模型鲁棒性。但是,大多数方法面对昂贵的时间和计算成本,用于在生成对抗性示例的多个步骤中计算梯度。为了提高训练效率,快速梯度符号方法(FGSM)在方法中仅通过计算一次来快速地采用。不幸的是,鲁棒性远非令人满意。初始化的方式可能引起一个原因。现有的快速在通常使用随机的样本不合时宜的初始化,这促进了效率,但会阻碍进一步的稳健性改善。到目前为止,快速AT中的初始化仍未广泛探索。在本文中,我们以样本依赖性的对抗初始化(即,来自良性图像条件的生成网络的输出及其来自目标网络的梯度信息的输出)快速增强。随着生成网络和目标网络在训练阶段共同优化,前者可以适应相对于后者的有效初始化,从而激发了逐渐改善鲁棒性。在四个基准数据库上进行的实验评估证明了我们所提出的方法比在方法上快速的最先进方法的优越性,以及与方法相当的鲁棒性。该代码在https://github.com//jiaxiaojunqaq//fgsm-sdi上发布。
translated by 谷歌翻译
Deep learning methods have gained increased attention in various applications due to their outstanding performance. For exploring how this high performance relates to the proper use of data artifacts and the accurate problem formulation of a given task, interpretation models have become a crucial component in developing deep learning-based systems. Interpretation models enable the understanding of the inner workings of deep learning models and offer a sense of security in detecting the misuse of artifacts in the input data. Similar to prediction models, interpretation models are also susceptible to adversarial inputs. This work introduces two attacks, AdvEdge and AdvEdge$^{+}$, that deceive both the target deep learning model and the coupled interpretation model. We assess the effectiveness of proposed attacks against two deep learning model architectures coupled with four interpretation models that represent different categories of interpretation models. Our experiments include the attack implementation using various attack frameworks. We also explore the potential countermeasures against such attacks. Our analysis shows the effectiveness of our attacks in terms of deceiving the deep learning models and their interpreters, and highlights insights to improve and circumvent the attacks.
translated by 谷歌翻译
对抗性的例子揭示了神经网络的脆弱性和不明原因的性质。研究对抗性实例的辩护具有相当大的实际重要性。大多数逆势的例子,错误分类网络通常无法被人类不可检测。在本文中,我们提出了一种防御模型,将分类器培训成具有形状偏好的人类感知分类模型。包括纹理传输网络(TTN)和辅助防御生成的对冲网络(GAN)的所提出的模型被称为人类感知辅助防御GaN(had-GaN)。 TTN用于扩展清洁图像的纹理样本,并有助于分类器聚焦在其形状上。 GaN用于为模型形成培训框架并生成必要的图像。在MNIST,时尚 - MNIST和CIFAR10上进行的一系列实验表明,所提出的模型优于网络鲁棒性的最先进的防御方法。该模型还证明了对抗性实例的防御能力的显着改善。
translated by 谷歌翻译
Although deep learning has made remarkable progress in processing various types of data such as images, text and speech, they are known to be susceptible to adversarial perturbations: perturbations specifically designed and added to the input to make the target model produce erroneous output. Most of the existing studies on generating adversarial perturbations attempt to perturb the entire input indiscriminately. In this paper, we propose ExploreADV, a general and flexible adversarial attack system that is capable of modeling regional and imperceptible attacks, allowing users to explore various kinds of adversarial examples as needed. We adapt and combine two existing boundary attack methods, DeepFool and Brendel\&Bethge Attack, and propose a mask-constrained adversarial attack system, which generates minimal adversarial perturbations under the pixel-level constraints, namely ``mask-constraints''. We study different ways of generating such mask-constraints considering the variance and importance of the input features, and show that our adversarial attack system offers users good flexibility to focus on sub-regions of inputs, explore imperceptible perturbations and understand the vulnerability of pixels/regions to adversarial attacks. We demonstrate our system to be effective based on extensive experiments and user study.
translated by 谷歌翻译
视觉检测是自动驾驶的关键任务,它是自动驾驶计划和控制的关键基础。深度神经网络在各种视觉任务中取得了令人鼓舞的结果,但众所周知,它们容易受到对抗性攻击的影响。在人们改善其稳健性之前,需要对深层视觉探测器的脆弱性进行全面的了解。但是,只有少数对抗性攻击/防御工程集中在对象检测上,其中大多数仅采用分类和/或本地化损失,而忽略了目的方面。在本文中,我们确定了Yolo探测器中与物体相关的严重相关对抗性脆弱性,并提出了针对自动驾驶汽车视觉检测物质方面的有效攻击策略。此外,为了解决这种脆弱性,我们提出了一种新的客观性训练方法,以进行视觉检测。实验表明,针对目标方面的拟议攻击比分别在KITTI和COCO流量数据集中分类和/或本地化损失产生的攻击效率高45.17%和43.50%。此外,拟议的对抗防御方法可以分别在Kitti和Coco交通方面提高检测器对目标攻击的鲁棒性高达21%和12%的地图。
translated by 谷歌翻译
The authors thank Nicholas Carlini (UC Berkeley) and Dimitris Tsipras (MIT) for feedback to improve the survey quality. We also acknowledge X. Huang (Uni. Liverpool), K. R. Reddy (IISC), E. Valle (UNICAMP), Y. Yoo (CLAIR) and others for providing pointers to make the survey more comprehensive.
translated by 谷歌翻译
人类严重依赖于形状信息来识别对象。相反,卷积神经网络(CNNS)偏向于纹理。这也许是CNNS易受对抗性示例的影响的主要原因。在这里,我们探索如何将偏差纳入CNN,以提高其鲁棒性。提出了两种算法,基于边缘不变,以中等难以察觉的扰动。在第一个中,分类器在具有边缘图作为附加信道的图像上进行前列地培训。在推断时间,边缘映射被重新计算并连接到图像。在第二算法中,训练了条件GaN,以将边缘映射从干净和/或扰动图像转换为清洁图像。推断在与输入的边缘图对应的生成图像上完成。超过10个数据集的广泛实验证明了算法对FGSM和$ \ ELL_ infty $ PGD-40攻击的有效性。此外,我们表明a)边缘信息还可以使其他对抗训练方法有益,并且B)在边缘增强输入上培训的CNNS对抗自然图像损坏,例如运动模糊,脉冲噪声和JPEG压缩,而不是仅培训的CNNS RGB图像。从更广泛的角度来看,我们的研究表明,CNN不会充分占对鲁棒性至关重要的图像结构。代码可用:〜\ url {https://github.com/aliborji/shapedefense.git}。
translated by 谷歌翻译
可说明的机器学习吸引了越来越多的关注,因为它提高了模型的透明度,这有助于机器学习在真实应用中受到信任。然而,最近证明了解释方法易于操纵,在那里我们可以在保持其预测常数的同时轻松改变模型的解释。为了解决这个问题,已经支付了一些努力来使用更稳定的解释方法或更改模型配置。在这项工作中,我们从训练角度解决了问题,并提出了一种称为对抗的解释培训的新培训计划(ATEX),以改善模型的内部解释稳定性,无论应用的具体解释方法如何。而不是直接指定数据实例上的解释值,而是仅为模型预测提供了要求,该预测避免了涉及在优化中的二阶导数。作为进一步的讨论,我们还发现解释稳定性与模型的另一个性质密切相关,即暴露于对抗性攻击的风险。通过实验,除了表明ATEX改善了针对操纵靶向解释的模型鲁棒性,它还带来了额外的益处,包括平滑解释,并在应用于模型时提高对抗性训练的功效。
translated by 谷歌翻译
深度神经网络(DNNS)最近在许多分类任务中取得了巨大的成功。不幸的是,它们容易受到对抗性攻击的影响,这些攻击会产生对抗性示例,这些示例具有很小的扰动,以欺骗DNN模型,尤其是在模型共享方案中。事实证明,对抗性训练是最有效的策略,它将对抗性示例注入模型训练中,以提高DNN模型的稳健性,以对对抗性攻击。但是,基于现有的对抗性示例的对抗训练无法很好地推广到标准,不受干扰的测试数据。为了在标准准确性和对抗性鲁棒性之间取得更好的权衡,我们提出了一个新型的对抗训练框架,称为潜在边界引导的对抗训练(梯子),该训练(梯子)在潜在的边界引导的对抗性示例上对对手进行对手训练DNN模型。与大多数在输入空间中生成对抗示例的现有方法相反,梯子通过增加对潜在特征的扰动而产生了无数的高质量对抗示例。扰动是沿SVM构建的具有注意机制的决策边界的正常情况进行的。我们从边界场的角度和可视化视图分析了生成的边界引导的对抗示例的优点。与Vanilla DNN和竞争性底线相比,对MNIST,SVHN,CELEBA和CIFAR-10的广泛实验和详细分析验证了梯子在标准准确性和对抗性鲁棒性之间取得更好的权衡方面的有效性。
translated by 谷歌翻译
对手补丁攻击是一个攻击算法的家庭,扰乱了一部分图像来欺骗深度神经网络模型。现有的补丁攻击主要考虑在输入 - 不可止液位置注入对抗性修补程序:预定义位置或随机位置。此攻击设置可能足以进行攻击,但在使用它时具有相当的限制以进行对抗性培训。因此,随着现有补丁攻击训练的强大模型不能有效地捍卫其他对抗攻击。在本文中,我们首先提出了一种端到端的补丁攻击算法,生成动态补丁攻击(GDPA),其在每个输入图像上对每个输入图像进行对外的修补程序模式和补丁位置。我们表明GDPA是一种通用攻击框架,可以产生具有一些配置更改的动态/静态和可见/不可见的补丁。其次,GDPA可以容易地融入对抗性培训,以改善对各种对抗攻击的模型鲁棒性。关于VGGFace,交通标志和想象的广泛实验表明,GDPA达到了比最先进的补丁攻击更高的攻击成功率,而具有GDPA的前列培训模型表明对竞争方法的对抗性补丁攻击的优越稳健性。我们的源代码可以在https://github.com/lxuniverse/gdpa找到。
translated by 谷歌翻译
尽管在许多领域都有成功的应用,但如今的机器学习模型遭受了臭名昭著的问题,例如脆弱性,对对抗性例子。除了陷入对抗攻击和防御之间的猫与小鼠游戏之外,本文还提供了替代观点来考虑对抗性示例,并探索我们是否可以在良性应用中利用它。我们首先将对抗性示例归因于使用非语义特征的人类模型差异。尽管在经典的机器学习机制中很大程度上被忽略了,但非语义功能具有三个有趣的特征,因为(1)模型独有,(2)对推理至关重要,以及(3)可利用的功能。受到这一点的启发,我们提出了良性的对抗性攻击的新想法,以利用三个方向的对抗性示例以善良:(1)对抗性图灵测试,(2)拒绝恶意模型应用,以及(3)对抗性数据扩增。每个方向都以动机详细说明,理由分析和原型应用来展示其潜力。
translated by 谷歌翻译
Adversarial attacks hamper the decision-making ability of neural networks by perturbing the input signal. The addition of calculated small distortion to images, for instance, can deceive a well-trained image classification network. In this work, we propose a novel attack technique called Sparse Adversarial and Interpretable Attack Framework (SAIF). Specifically, we design imperceptible attacks that contain low-magnitude perturbations at a small number of pixels and leverage these sparse attacks to reveal the vulnerability of classifiers. We use the Frank-Wolfe (conditional gradient) algorithm to simultaneously optimize the attack perturbations for bounded magnitude and sparsity with $O(1/\sqrt{T})$ convergence. Empirical results show that SAIF computes highly imperceptible and interpretable adversarial examples, and outperforms state-of-the-art sparse attack methods on the ImageNet dataset.
translated by 谷歌翻译
评估防御模型的稳健性是对抗对抗鲁棒性研究的具有挑战性的任务。僵化的渐变,先前已经发现了一种梯度掩蔽,以许多防御方法存在并导致鲁棒性的错误信号。在本文中,我们确定了一种更细微的情况,称为不平衡梯度,也可能导致过高的对抗性鲁棒性。当边缘损耗的一个术语的梯度主导并将攻击朝向次优化方向推动时,发生不平衡梯度的现象。为了利用不平衡的梯度,我们制定了分解利润率损失的边缘分解(MD)攻击,并通过两阶段过程分别探讨了这些术语的攻击性。我们还提出了一个Multared和Ensemble版本的MD攻击。通过调查自2018年以来提出的17个防御模型,我们发现6种型号易受不平衡梯度的影响,我们的MD攻击可以减少由最佳基线独立攻击评估的鲁棒性另外2%。我们还提供了对不平衡梯度的可能原因和有效对策的深入分析。
translated by 谷歌翻译
Data augmentation is a widely used technique for enhancing the generalization ability of convolutional neural networks (CNNs) in image classification tasks. Occlusion is a critical factor that affects on the generalization ability of image classification models. In order to generate new samples, existing data augmentation methods based on information deletion simulate occluded samples by randomly removing some areas in the images. However, those methods cannot delete areas of the images according to their structural features of the images. To solve those problems, we propose a novel data augmentation method, AdvMask, for image classification tasks. Instead of randomly removing areas in the images, AdvMask obtains the key points that have the greatest influence on the classification results via an end-to-end sparse adversarial attack module. Therefore, we can find the most sensitive points of the classification results without considering the diversity of various image appearance and shapes of the object of interest. In addition, a data augmentation module is employed to generate structured masks based on the key points, thus forcing the CNN classification models to seek other relevant content when the most discriminative content is hidden. AdvMask can effectively improve the performance of classification models in the testing process. The experimental results on various datasets and CNN models verify that the proposed method outperforms other previous data augmentation methods in image classification tasks.
translated by 谷歌翻译
人群计数已被广泛用于估计安全至关重要的场景中的人数,被证明很容易受到物理世界中对抗性例子的影响(例如,对抗性斑块)。尽管有害,但对抗性例子也很有价值,对于评估和更好地理解模型的鲁棒性也很有价值。但是,现有的对抗人群计算的对抗性示例生成方法在不同的黑盒模型之间缺乏强大的可传递性,这限制了它们对现实世界系统的实用性。本文提出了与模型不变特征正相关的事实,本文提出了感知的对抗贴片(PAP)生成框架,以使用模型共享的感知功能来定制对对抗性的扰动。具体来说,我们将一种自适应人群密度加权方法手工制作,以捕获各种模型中不变的量表感知特征,并利用密度引导的注意力来捕获模型共享的位置感知。证明它们都可以提高我们对抗斑块的攻击性转移性。广泛的实验表明,我们的PAP可以在数字世界和物理世界中实现最先进的进攻性能,并且以大幅度的优于以前的提案(最多+685.7 MAE和+699.5 MSE)。此外,我们从经验上证明,对我们的PAP进行的对抗训练可以使香草模型的性能受益,以减轻人群计数的几个实际挑战,包括跨数据集的概括(高达-376.0 MAE和-376.0 MAE和-354.9 MSE)和对复杂背景的鲁棒性(上升)至-10.3 MAE和-16.4 MSE)。
translated by 谷歌翻译
在变异场景中已经揭示了对抗性实例的现象。最近的研究表明,精心设计的对抗性防御策略可以改善深度学习模型针对对抗性例子的鲁棒性。但是,随着国防技术的快速发展,由于现有手动设计的对抗性攻击的性能较弱,因此很难评估防御模型的鲁棒性。为了应对挑战,鉴于防御模型,需要进一步利用有效的对抗性攻击,较少的计算负担和较低的健壮精度。因此,我们提出了一种用于自动对抗攻击优化设计的多目标模因算法,该算法实现了对近乎最佳的对抗性攻击对防御模型的近乎最佳的对抗性攻击。首先,构建了自动对抗攻击优化设计的更通用的数学模型,其中搜索空间不仅包括攻击者操作,大小,迭代号和损失功能,还包括多个对抗性攻击的连接方式。此外,我们开发了一种组合NSGA-II和本地搜索以解决优化问题的多目标模因算法。最后,为了降低搜索过程中的评估成本,我们根据模型输出的每个图像的跨熵损失值的排序提出了代表性的数据选择策略。关于CIFAR10,CIFAR100和Imagenet数据集的实验显示了我们提出的方法的有效性。
translated by 谷歌翻译