有必要提高某些特殊班级的表现,或者特别保护它们免受对抗学习的攻击。本文提出了一个将成本敏感分类和对抗性学习结合在一起的框架,以训练可以区分受保护和未受保护的类的模型,以使受保护的类别不太容易受到对抗性示例的影响。在此框架中,我们发现在训练深神经网络(称为Min-Max属性)期间,一个有趣的现象,即卷积层中大多数参数的绝对值。基于这种最小的最大属性,该属性是在随机分布的角度制定和分析的,我们进一步建立了一个针对对抗性示例的新防御模型,以改善对抗性鲁棒性。构建模型的一个优点是,它的性能比标准模型更好,并且可以与对抗性训练相结合,以提高性能。在实验上证实,对于所有类别的平均准确性,我们的模型在没有发生攻击时几乎与现有模型一样,并且在发生攻击时比现有模型更好。具体而言,关于受保护类的准确性,提议的模型比发生攻击时的现有模型要好得多。
translated by 谷歌翻译
在本文中,我们提出了一种防御策略,以通过合并隐藏的层表示来改善对抗性鲁棒性。这种防御策略的关键旨在压缩或过滤输入信息,包括对抗扰动。而且这种防御策略可以被视为一种激活函数,可以应用于任何类型的神经网络。从理论上讲,我们在某些条件下也证明了这种防御策略的有效性。此外,合并隐藏层表示,我们提出了三种类型的对抗攻击,分别生成三种类型的对抗示例。实验表明,我们的防御方法可以显着改善深神经网络的对抗性鲁棒性,即使我们不采用对抗性训练,也可以实现最新的表现。
translated by 谷歌翻译
对抗性的例子揭示了神经网络的脆弱性和不明原因的性质。研究对抗性实例的辩护具有相当大的实际重要性。大多数逆势的例子,错误分类网络通常无法被人类不可检测。在本文中,我们提出了一种防御模型,将分类器培训成具有形状偏好的人类感知分类模型。包括纹理传输网络(TTN)和辅助防御生成的对冲网络(GAN)的所提出的模型被称为人类感知辅助防御GaN(had-GaN)。 TTN用于扩展清洁图像的纹理样本,并有助于分类器聚焦在其形状上。 GaN用于为模型形成培训框架并生成必要的图像。在MNIST,时尚 - MNIST和CIFAR10上进行的一系列实验表明,所提出的模型优于网络鲁棒性的最先进的防御方法。该模型还证明了对抗性实例的防御能力的显着改善。
translated by 谷歌翻译
最近的研究表明,深度神经网络(DNNS)极易受到精心设计的对抗例子的影响。对那些对抗性例子的对抗性学习已被证明是防御这种攻击的最有效方法之一。目前,大多数现有的对抗示例生成方法基于一阶梯度,这几乎无法进一步改善模型的鲁棒性,尤其是在面对二阶对抗攻击时。与一阶梯度相比,二阶梯度提供了相对于自然示例的损失格局的更准确近似。受此启发的启发,我们的工作制作了二阶的对抗示例,并使用它们来训练DNNS。然而,二阶优化涉及Hessian Inverse的耗时计算。我们通过将问题转换为Krylov子空间中的优化,提出了一种近似方法,该方法显着降低了计算复杂性以加快训练过程。在矿工和CIFAR-10数据集上进行的广泛实验表明,我们使用二阶对抗示例的对抗性学习优于其他FISRT-阶方法,这可以改善针对广泛攻击的模型稳健性。
translated by 谷歌翻译
Recent work has demonstrated that deep neural networks are vulnerable to adversarial examples-inputs that are almost indistinguishable from natural data and yet classified incorrectly by the network. In fact, some of the latest findings suggest that the existence of adversarial attacks may be an inherent weakness of deep learning models. To address this problem, we study the adversarial robustness of neural networks through the lens of robust optimization. This approach provides us with a broad and unifying view on much of the prior work on this topic. Its principled nature also enables us to identify methods for both training and attacking neural networks that are reliable and, in a certain sense, universal. In particular, they specify a concrete security guarantee that would protect against any adversary. These methods let us train networks with significantly improved resistance to a wide range of adversarial attacks. They also suggest the notion of security against a first-order adversary as a natural and broad security guarantee. We believe that robustness against such well-defined classes of adversaries is an important stepping stone towards fully resistant deep learning models. 1
translated by 谷歌翻译
基于深度神经网络(DNN)的智能信息(IOT)系统已被广泛部署在现实世界中。然而,发现DNNS易受对抗性示例的影响,这提高了人们对智能物联网系统的可靠性和安全性的担忧。测试和评估IOT系统的稳健性成为必要和必要。最近已经提出了各种攻击和策略,但效率问题仍未纠正。现有方法是计算地广泛或耗时,这在实践中不适用。在本文中,我们提出了一种称为攻击启发GaN(AI-GaN)的新框架,在有条件地产生对抗性实例。曾经接受过培训,可以有效地给予对抗扰动的输入图像和目标类。我们在白盒设置的不同数据集中应用AI-GaN,黑匣子设置和由最先进的防御保护的目标模型。通过广泛的实验,AI-GaN实现了高攻击成功率,优于现有方法,并显着降低了生成时间。此外,首次,AI-GaN成功地缩放到复杂的数据集。 Cifar-100和Imagenet,所有课程中的成功率约为90美元。
translated by 谷歌翻译
尽管机器学习系统的效率和可扩展性,但最近的研究表明,许多分类方法,尤其是深神经网络(DNN),易受对抗的例子;即,仔细制作欺骗训练有素的分类模型的例子,同时无法区分从自然数据到人类。这使得在安全关键区域中应用DNN或相关方法可能不安全。由于这个问题是由Biggio等人确定的。 (2013)和Szegedy等人。(2014年),在这一领域已经完成了很多工作,包括开发攻击方法,以产生对抗的例子和防御技术的构建防范这些例子。本文旨在向统计界介绍这一主题及其最新发展,主要关注对抗性示例的产生和保护。在数值实验中使用的计算代码(在Python和R)公开可用于读者探讨调查的方法。本文希望提交人们将鼓励更多统计学人员在这种重要的令人兴奋的领域的产生和捍卫对抗的例子。
translated by 谷歌翻译
深度卷积神经网络可以准确地分类各种自然图像,但是在设计时可能很容易被欺骗,图像中嵌入了不可察觉的扰动。在本文中,我们设计了一种多管齐下的培训,输入转换和图像集成系统,该系统是攻击不可知论的,不容易估计。我们的系统结合了两个新型功能。第一个是一个转换层,该转换层从集体级训练数据示例中计算级别的多项式内核,并且迭代更新在推理时间上基于其特征内核差异的输入图像副本,以创建转换后的输入集合。第二个是一个分类系统,该系统将未防御网络的预测结合在一起,对被过滤图像的合奏进行了硬投票。我们在CIFAR10数据集上的评估显示,我们的系统提高了未防御性网络在不同距离指标下的各种有界和无限的白色盒子攻击的鲁棒性,同时牺牲了清洁图像的精度很小。反对自适应的全知攻击者创建端到端攻击,我们的系统成功地增强了对抗训练的网络的现有鲁棒性,为此,我们的方法最有效地应用了。
translated by 谷歌翻译
已知深度神经网络(DNN)容易受到用不可察觉的扰动制作的对抗性示例的影响,即,输入图像的微小变化会引起错误的分类,从而威胁着基于深度学习的部署系统的可靠性。经常采用对抗训练(AT)来通过训练损坏和干净的数据的混合物来提高DNN的鲁棒性。但是,大多数基于AT的方法在处理\ textit {转移的对抗示例}方面是无效的,这些方法是生成以欺骗各种防御模型的生成的,因此无法满足现实情况下提出的概括要求。此外,对抗性训练一般的国防模型不能对具有扰动的输入产生可解释的预测,而不同的领域专家则需要一个高度可解释的强大模型才能了解DNN的行为。在这项工作中,我们提出了一种基于Jacobian规范和选择性输入梯度正则化(J-SIGR)的方法,该方法通过Jacobian归一化提出了线性化的鲁棒性,还将基于扰动的显着性图正规化,以模仿模型的可解释预测。因此,我们既可以提高DNN的防御能力和高解释性。最后,我们评估了跨不同体系结构的方法,以针对强大的对抗性攻击。实验表明,提出的J-Sigr赋予了针对转移的对抗攻击的鲁棒性,我们还表明,来自神经网络的预测易于解释。
translated by 谷歌翻译
对抗性的鲁棒性已经成为深度学习的核心目标,无论是在理论和实践中。然而,成功的方法来改善对抗的鲁棒性(如逆势训练)在不受干扰的数据上大大伤害了泛化性能。这可能会对对抗性鲁棒性如何影响现实世界系统的影响(即,如果它可以提高未受干扰的数据的准确性),许多人可能选择放弃鲁棒性)。我们提出内插对抗培训,该培训最近雇用了在对抗培训框架内基于插值的基于插值的培训方法。在CiFar -10上,对抗性训练增加了标准测试错误(当没有对手时)从4.43%到12.32%,而我们的内插对抗培训我们保留了对抗性的鲁棒性,同时实现了仅6.45%的标准测试误差。通过我们的技术,强大模型标准误差的相对增加从178.1%降至仅为45.5%。此外,我们提供内插对抗性培训的数学分析,以确认其效率,并在鲁棒性和泛化方面展示其优势。
translated by 谷歌翻译
对抗性培训已被广泛用于增强神经网络模型对抗对抗攻击的鲁棒性。但是,自然准确性与强大的准确性之间仍有一个显着的差距。我们发现其中一个原因是常用的标签,单热量矢量,阻碍了图像识别的学习过程。在本文中,我们提出了一种称为低温蒸馏(LTD)的方法,该方法基于知识蒸馏框架来产生所需的软标记。与以前的工作不同,LTD在教师模型中使用相对较低的温度,采用不同但固定的,温度为教师模型和学生模型。此外,我们已经调查了有限公司协同使用自然数据和对抗性的方法。实验结果表明,在没有额外的未标记数据的情况下,所提出的方法与上一项工作相结合,可以分别在CiFar-10和CiFar-100数据集上实现57.72 \%和30.36 \%的鲁棒精度,这是州的大约1.21 \%通常的方法平均。
translated by 谷歌翻译
对抗性训练(AT)已被证明可以通过利用对抗性示例进行训练来有效地改善模型鲁棒性。但是,大多数方法面对昂贵的时间和计算成本,用于在生成对抗性示例的多个步骤中计算梯度。为了提高训练效率,快速梯度符号方法(FGSM)在方法中仅通过计算一次来快速地采用。不幸的是,鲁棒性远非令人满意。初始化的方式可能引起一个原因。现有的快速在通常使用随机的样本不合时宜的初始化,这促进了效率,但会阻碍进一步的稳健性改善。到目前为止,快速AT中的初始化仍未广泛探索。在本文中,我们以样本依赖性的对抗初始化(即,来自良性图像条件的生成网络的输出及其来自目标网络的梯度信息的输出)快速增强。随着生成网络和目标网络在训练阶段共同优化,前者可以适应相对于后者的有效初始化,从而激发了逐渐改善鲁棒性。在四个基准数据库上进行的实验评估证明了我们所提出的方法比在方法上快速的最先进方法的优越性,以及与方法相当的鲁棒性。该代码在https://github.com//jiaxiaojunqaq//fgsm-sdi上发布。
translated by 谷歌翻译
大多数对抗攻击防御方法依赖于混淆渐变。这些方法在捍卫基于梯度的攻击方面是成功的;然而,它们容易被攻击绕过,该攻击不使用梯度或近似近似和使用校正梯度的攻击。不存在不存在诸如对抗培训等梯度的防御,但这些方法通常对诸如其幅度的攻击进行假设。我们提出了一种分类模型,该模型不会混淆梯度,并且通过施工而强大而不承担任何关于攻击的知识。我们的方法将分类作为优化问题,我们“反转”在不受干扰的自然图像上培训的条件发电机,以找到生成最接近查询图像的类。我们假设潜在的脆性抗逆性攻击源是前馈分类器的高度低维性质,其允许对手发现输入空间中的小扰动,从而导致输出空间的大变化。另一方面,生成模型通常是低到高维的映射。虽然该方法与防御GaN相关,但在我们的模型中使用条件生成模型和反演而不是前馈分类是临界差异。与Defense-GaN不同,它被证明生成了容易规避的混淆渐变,我们表明我们的方法不会混淆梯度。我们展示了我们的模型对黑箱攻击的极其强劲,并与自然训练的前馈分类器相比,对白盒攻击的鲁棒性提高。
translated by 谷歌翻译
We identify a trade-off between robustness and accuracy that serves as a guiding principle in the design of defenses against adversarial examples. Although this problem has been widely studied empirically, much remains unknown concerning the theory underlying this trade-off. In this work, we decompose the prediction error for adversarial examples (robust error) as the sum of the natural (classification) error and boundary error, and provide a differentiable upper bound using the theory of classification-calibrated loss, which is shown to be the tightest possible upper bound uniform over all probability distributions and measurable predictors. Inspired by our theoretical analysis, we also design a new defense method, TRADES, to trade adversarial robustness off against accuracy. Our proposed algorithm performs well experimentally in real-world datasets. The methodology is the foundation of our entry to the NeurIPS 2018 Adversarial Vision Challenge in which we won the 1st place out of ~2,000 submissions, surpassing the runner-up approach by 11.41% in terms of mean 2 perturbation distance.
translated by 谷歌翻译
深度神经网络(DNN)容易受到对抗性示例的影响,其中DNN由于含有不可察觉的扰动而被误导为虚假输出。对抗性训练是一种可靠有效的防御方法,可能会大大减少神经网络的脆弱性,并成为强大学习的事实上的标准。尽管许多最近的作品实践了以数据为中心的理念,例如如何生成更好的对抗性示例或使用生成模型来产生额外的培训数据,但我们回顾了模型本身,并从深度特征分布的角度重新审视对抗性的鲁棒性有见地的互补性。在本文中,我们建议分支正交性对抗训练(BORT)获得最先进的性能,仅使用原始数据集用于对抗训练。为了练习我们整合多个正交解决方案空间的设计思想,我们利用一个简单明了的多分支神经网络,可消除对抗性攻击而不会增加推理时间。我们启发提出相应的损耗函数,分支 - 正交丢失,以使多支出模型正交的每个溶液空间。我们分别在CIFAR-10,CIFAR-100和SVHN上评估了我们的方法,分别针对\ ell _ {\ infty}的规范触发尺寸\ epsilon = 8/255。进行了详尽的实验,以表明我们的方法超出了所有最新方法,而无需任何技巧。与所有不使用其他数据进行培训的方法相比,我们的模型在CIFAR-10和CIFAR-100上实现了67.3%和41.5%的鲁棒精度(在最先进的ART上提高了 +7.23%和 +9.07% )。我们还使用比我们的训练组胜过比我们的方法的表现要大得多。我们所有的模型和代码均可在https://github.com/huangd1999/bort上在线获得。
translated by 谷歌翻译
作为反对攻击的最有效的防御方法之一,对抗性训练倾向于学习包容性的决策边界,以提高深度学习模型的鲁棒性。但是,由于沿对抗方向的边缘的大幅度和不必要的增加,对抗性训练会在自然实例和对抗性示例之间引起严重的交叉,这不利于平衡稳健性和自然准确性之间的权衡。在本文中,我们提出了一种新颖的对抗训练计划,以在稳健性和自然准确性之间进行更好的权衡。它旨在学习一个中度包容的决策边界,这意味着决策边界下的自然示例的边缘是中等的。我们称此方案为中等边缘的对抗训练(MMAT),该方案生成更细粒度的对抗示例以减轻交叉问题。我们还利用了经过良好培训的教师模型的逻辑来指导我们的模型学习。最后,MMAT在Black-Box和White-Box攻击下都可以实现高自然的精度和鲁棒性。例如,在SVHN上,实现了最新的鲁棒性和自然精度。
translated by 谷歌翻译
We present a new algorithm to learn a deep neural network model robust against adversarial attacks. Previous algorithms demonstrate an adversarially trained Bayesian Neural Network (BNN) provides improved robustness. We recognize the adversarial learning approach for approximating the multi-modal posterior distribution of a Bayesian model can lead to mode collapse; consequently, the model's achievements in robustness and performance are sub-optimal. Instead, we first propose preventing mode collapse to better approximate the multi-modal posterior distribution. Second, based on the intuition that a robust model should ignore perturbations and only consider the informative content of the input, we conceptualize and formulate an information gain objective to measure and force the information learned from both benign and adversarial training instances to be similar. Importantly. we prove and demonstrate that minimizing the information gain objective allows the adversarial risk to approach the conventional empirical risk. We believe our efforts provide a step toward a basis for a principled method of adversarially training BNNs. Our model demonstrate significantly improved robustness--up to 20%--compared with adversarial training and Adv-BNN under PGD attacks with 0.035 distortion on both CIFAR-10 and STL-10 datasets.
translated by 谷歌翻译
Adversarial examples are perturbed inputs designed to fool machine learning models. Adversarial training injects such examples into training data to increase robustness. To scale this technique to large datasets, perturbations are crafted using fast single-step methods that maximize a linear approximation of the model's loss. We show that this form of adversarial training converges to a degenerate global minimum, wherein small curvature artifacts near the data points obfuscate a linear approximation of the loss. The model thus learns to generate weak perturbations, rather than defend against strong ones. As a result, we find that adversarial training remains vulnerable to black-box attacks, where we transfer perturbations computed on undefended models, as well as to a powerful novel single-step attack that escapes the non-smooth vicinity of the input data via a small random step. We further introduce Ensemble Adversarial Training, a technique that augments training data with perturbations transferred from other models. On ImageNet, Ensemble Adversarial Training yields models with stronger robustness to blackbox attacks. In particular, our most robust model won the first round of the NIPS 2017 competition on Defenses against Adversarial Attacks (Kurakin et al., 2017c). However, subsequent work found that more elaborate black-box attacks could significantly enhance transferability and reduce the accuracy of our models.
translated by 谷歌翻译
对抗性训练及其变体已成为使用神经网络实现对抗性稳健分类的普遍方法。但是,它的计算成本增加,以及标准性能和稳健性能之间的显着差距阻碍了进步,并提出了我们是否可以做得更好的问题。在这项工作中,我们退后一步,问:模型可以通过适当优化的集合通过标准培训来实现鲁棒性吗?为此,我们设计了一种用于鲁棒分类的元学习方法,该方法以原则性的方式在部署之前优化了数据集,并旨在有效地删除数据的非稳定部分。我们将优化方法作为内核回归的多步PGD程序进行了,其中一类核描述了无限宽的神经网(神经切线核-NTKS)。 MNIST和CIFAR-10的实验表明,当在内核回归分类器和神经网络中部署时,我们生成的数据集对PGD攻击都非常鲁棒性。但是,这种鲁棒性有些谬误,因为替代性攻击设法欺骗了模型,我们发现文献中以前的类似作品也是如此。我们讨论了这一点的潜在原因,并概述了进一步的研究途径。
translated by 谷歌翻译
许多最先进的ML模型在各种任务中具有优于图像分类的人类。具有如此出色的性能,ML模型今天被广泛使用。然而,存在对抗性攻击和数据中毒攻击的真正符合ML模型的稳健性。例如,Engstrom等人。证明了最先进的图像分类器可以容易地被任意图像上的小旋转欺骗。由于ML系统越来越纳入安全性和安全敏感的应用,对抗攻击和数据中毒攻击构成了相当大的威胁。本章侧重于ML安全的两个广泛和重要的领域:对抗攻击和数据中毒攻击。
translated by 谷歌翻译