最近的研究表明,深度神经网络(DNNS)极易受到精心设计的对抗例子的影响。对那些对抗性例子的对抗性学习已被证明是防御这种攻击的最有效方法之一。目前,大多数现有的对抗示例生成方法基于一阶梯度,这几乎无法进一步改善模型的鲁棒性,尤其是在面对二阶对抗攻击时。与一阶梯度相比,二阶梯度提供了相对于自然示例的损失格局的更准确近似。受此启发的启发,我们的工作制作了二阶的对抗示例,并使用它们来训练DNNS。然而,二阶优化涉及Hessian Inverse的耗时计算。我们通过将问题转换为Krylov子空间中的优化,提出了一种近似方法,该方法显着降低了计算复杂性以加快训练过程。在矿工和CIFAR-10数据集上进行的广泛实验表明,我们使用二阶对抗示例的对抗性学习优于其他FISRT-阶方法,这可以改善针对广泛攻击的模型稳健性。
translated by 谷歌翻译
有必要提高某些特殊班级的表现,或者特别保护它们免受对抗学习的攻击。本文提出了一个将成本敏感分类和对抗性学习结合在一起的框架,以训练可以区分受保护和未受保护的类的模型,以使受保护的类别不太容易受到对抗性示例的影响。在此框架中,我们发现在训练深神经网络(称为Min-Max属性)期间,一个有趣的现象,即卷积层中大多数参数的绝对值。基于这种最小的最大属性,该属性是在随机分布的角度制定和分析的,我们进一步建立了一个针对对抗性示例的新防御模型,以改善对抗性鲁棒性。构建模型的一个优点是,它的性能比标准模型更好,并且可以与对抗性训练相结合,以提高性能。在实验上证实,对于所有类别的平均准确性,我们的模型在没有发生攻击时几乎与现有模型一样,并且在发生攻击时比现有模型更好。具体而言,关于受保护类的准确性,提议的模型比发生攻击时的现有模型要好得多。
translated by 谷歌翻译
Recent work has demonstrated that deep neural networks are vulnerable to adversarial examples-inputs that are almost indistinguishable from natural data and yet classified incorrectly by the network. In fact, some of the latest findings suggest that the existence of adversarial attacks may be an inherent weakness of deep learning models. To address this problem, we study the adversarial robustness of neural networks through the lens of robust optimization. This approach provides us with a broad and unifying view on much of the prior work on this topic. Its principled nature also enables us to identify methods for both training and attacking neural networks that are reliable and, in a certain sense, universal. In particular, they specify a concrete security guarantee that would protect against any adversary. These methods let us train networks with significantly improved resistance to a wide range of adversarial attacks. They also suggest the notion of security against a first-order adversary as a natural and broad security guarantee. We believe that robustness against such well-defined classes of adversaries is an important stepping stone towards fully resistant deep learning models. 1
translated by 谷歌翻译
已知深度神经网络(DNN)容易受到用不可察觉的扰动制作的对抗性示例的影响,即,输入图像的微小变化会引起错误的分类,从而威胁着基于深度学习的部署系统的可靠性。经常采用对抗训练(AT)来通过训练损坏和干净的数据的混合物来提高DNN的鲁棒性。但是,大多数基于AT的方法在处理\ textit {转移的对抗示例}方面是无效的,这些方法是生成以欺骗各种防御模型的生成的,因此无法满足现实情况下提出的概括要求。此外,对抗性训练一般的国防模型不能对具有扰动的输入产生可解释的预测,而不同的领域专家则需要一个高度可解释的强大模型才能了解DNN的行为。在这项工作中,我们提出了一种基于Jacobian规范和选择性输入梯度正则化(J-SIGR)的方法,该方法通过Jacobian归一化提出了线性化的鲁棒性,还将基于扰动的显着性图正规化,以模仿模型的可解释预测。因此,我们既可以提高DNN的防御能力和高解释性。最后,我们评估了跨不同体系结构的方法,以针对强大的对抗性攻击。实验表明,提出的J-Sigr赋予了针对转移的对抗攻击的鲁棒性,我们还表明,来自神经网络的预测易于解释。
translated by 谷歌翻译
到目前为止对抗训练是抵御对抗例子的最有效的策略。然而,由于每个训练步骤中的迭代对抗性攻击,它遭受了高的计算成本。最近的研究表明,通过随机初始化执行单步攻击,可以实现快速的对抗训练。然而,这种方法仍然落后于稳定性和模型稳健性的最先进的对手训练算法。在这项工作中,我们通过观察随机平滑的随机初始化来更好地优化内部最大化问题,对快速对抗培训进行新的理解。在这种新的视角之后,我们还提出了一种新的初始化策略,向后平滑,进一步提高单步强大培训方法的稳定性和模型稳健性。多个基准测试的实验表明,我们的方法在使用更少的训练时间(使用相同的培训计划时,使用更少的培训时间($ \ sim $ 3x改进)时,我们的方法达到了类似的模型稳健性。
translated by 谷歌翻译
Adversarial training is widely used to improve the robustness of deep neural networks to adversarial attack. However, adversarial training is prone to overfitting, and the cause is far from clear. This work sheds light on the mechanisms underlying overfitting through analyzing the loss landscape w.r.t. the input. We find that robust overfitting results from standard training, specifically the minimization of the clean loss, and can be mitigated by regularization of the loss gradients. Moreover, we find that robust overfitting turns severer during adversarial training partially because the gradient regularization effect of adversarial training becomes weaker due to the increase in the loss landscapes curvature. To improve robust generalization, we propose a new regularizer to smooth the loss landscape by penalizing the weighted logits variation along the adversarial direction. Our method significantly mitigates robust overfitting and achieves the highest robustness and efficiency compared to similar previous methods. Code is available at https://github.com/TreeLLi/Combating-RO-AdvLC.
translated by 谷歌翻译
虽然多步逆势培训被广泛流行作为对抗强烈的对抗攻击的有效防御方法,但其计算成本与标准培训相比,其计算成本是众所周知的。已经提出了几种单步侵权培训方法来减轻上述开销费用;但是,根据优化设置,它们的性能并不能充分可靠。为了克服这些限制,我们偏离了现有的基于输入空间的对抗性培训制度,并提出了一种单步潜在培训方法(SLAT),其利用潜在的代表梯度作为潜在的对抗扰动。我们证明,与所采用的潜伏扰动,恢复局部线性度并确保与现有的单步逆势训练方法相比,恢复局部线性度并确保可靠性的特征梯度的L1规范。因为潜伏的扰动基于可以在输入梯度计算过程中免费获得的潜在表示的梯度,所以所提出的方法与快速梯度标志方法相当成本。实验结果表明,尽管其结构简单,但优于最先进的加速的对抗训练方法。
translated by 谷歌翻译
深度神经网络已成为现代图像识别系统的驱动力。然而,神经网络对抗对抗性攻击的脆弱性对受这些系统影响的人构成严重威胁。在本文中,我们专注于一个真实的威胁模型,中间对手恶意拦截和erturbs网页用户上传在线。这种类型的攻击可以在简单的性能下降之上提高严重的道德问题。为了防止这种攻击,我们设计了一种新的双层优化算法,该算法在对抗对抗扰动的自然图像附近找到点。CiFar-10和Imagenet的实验表明我们的方法可以有效地强制在给定的修改预算范围内的自然图像。我们还显示所提出的方法可以在共同使用随机平滑时提高鲁棒性。
translated by 谷歌翻译
在本文中,我们提出了一种防御策略,以通过合并隐藏的层表示来改善对抗性鲁棒性。这种防御策略的关键旨在压缩或过滤输入信息,包括对抗扰动。而且这种防御策略可以被视为一种激活函数,可以应用于任何类型的神经网络。从理论上讲,我们在某些条件下也证明了这种防御策略的有效性。此外,合并隐藏层表示,我们提出了三种类型的对抗攻击,分别生成三种类型的对抗示例。实验表明,我们的防御方法可以显着改善深神经网络的对抗性鲁棒性,即使我们不采用对抗性训练,也可以实现最新的表现。
translated by 谷歌翻译
基于深度神经网络(DNN)的智能信息(IOT)系统已被广泛部署在现实世界中。然而,发现DNNS易受对抗性示例的影响,这提高了人们对智能物联网系统的可靠性和安全性的担忧。测试和评估IOT系统的稳健性成为必要和必要。最近已经提出了各种攻击和策略,但效率问题仍未纠正。现有方法是计算地广泛或耗时,这在实践中不适用。在本文中,我们提出了一种称为攻击启发GaN(AI-GaN)的新框架,在有条件地产生对抗性实例。曾经接受过培训,可以有效地给予对抗扰动的输入图像和目标类。我们在白盒设置的不同数据集中应用AI-GaN,黑匣子设置和由最先进的防御保护的目标模型。通过广泛的实验,AI-GaN实现了高攻击成功率,优于现有方法,并显着降低了生成时间。此外,首次,AI-GaN成功地缩放到复杂的数据集。 Cifar-100和Imagenet,所有课程中的成功率约为90美元。
translated by 谷歌翻译
深度神经网络很容易被称为对抗攻击的小扰动都愚弄。对抗性培训(AT)是一种近似解决了稳健的优化问题,以最大限度地减少最坏情况损失,并且被广泛认为是对这种攻击的最有效的防御。由于产生了强大的对抗性示例的高计算时间,已经提出了单步方法来减少培训时间。然而,这些方法遭受灾难性的过度装备,在训练期间侵犯准确度下降。虽然提出了改进,但它们增加了培训时间和稳健性远非多步骤。我们为FW优化(FW-AT)开发了对抗的对抗培训的理论框架,揭示了损失景观与$ \ ell_2 $失真之间的几何连接。我们分析地表明FW攻击的高变形相当于沿攻击路径的小梯度变化。然后在各种深度神经网络架构上进行实验证明,$ \ ell \ infty $攻击对抗强大的模型实现近乎最大的$ \ ell_2 $失真,而标准网络具有较低的失真。此外,实验表明,灾难性的过度拟合与FW攻击的低变形强烈相关。为了展示我们理论框架的效用,我们开发FW-AT-Adap,这是一种新的逆势训练算法,它使用简单的失真度量来调整攻击步骤的数量,以提高效率而不会影响鲁棒性。 FW-AT-Adapt提供培训时间以单步快速分配方法,并改善了在白色盒子和黑匣子设置中的普发内精度的最小损失和多步PGD之间的差距。
translated by 谷歌翻译
尽管机器学习系统的效率和可扩展性,但最近的研究表明,许多分类方法,尤其是深神经网络(DNN),易受对抗的例子;即,仔细制作欺骗训练有素的分类模型的例子,同时无法区分从自然数据到人类。这使得在安全关键区域中应用DNN或相关方法可能不安全。由于这个问题是由Biggio等人确定的。 (2013)和Szegedy等人。(2014年),在这一领域已经完成了很多工作,包括开发攻击方法,以产生对抗的例子和防御技术的构建防范这些例子。本文旨在向统计界介绍这一主题及其最新发展,主要关注对抗性示例的产生和保护。在数值实验中使用的计算代码(在Python和R)公开可用于读者探讨调查的方法。本文希望提交人们将鼓励更多统计学人员在这种重要的令人兴奋的领域的产生和捍卫对抗的例子。
translated by 谷歌翻译
对抗性训练(AT)已被证明可以通过利用对抗性示例进行训练来有效地改善模型鲁棒性。但是,大多数方法面对昂贵的时间和计算成本,用于在生成对抗性示例的多个步骤中计算梯度。为了提高训练效率,快速梯度符号方法(FGSM)在方法中仅通过计算一次来快速地采用。不幸的是,鲁棒性远非令人满意。初始化的方式可能引起一个原因。现有的快速在通常使用随机的样本不合时宜的初始化,这促进了效率,但会阻碍进一步的稳健性改善。到目前为止,快速AT中的初始化仍未广泛探索。在本文中,我们以样本依赖性的对抗初始化(即,来自良性图像条件的生成网络的输出及其来自目标网络的梯度信息的输出)快速增强。随着生成网络和目标网络在训练阶段共同优化,前者可以适应相对于后者的有效初始化,从而激发了逐渐改善鲁棒性。在四个基准数据库上进行的实验评估证明了我们所提出的方法比在方法上快速的最先进方法的优越性,以及与方法相当的鲁棒性。该代码在https://github.com//jiaxiaojunqaq//fgsm-sdi上发布。
translated by 谷歌翻译
现有的工作表明,通过天真梯度的优化方法训练的神经网络易于对抗对抗攻击,在普通输入上增加了小恶意足以使神经网络错误。与此同时,对针对神经网络的攻击是提高其鲁棒性的关键。对抗对抗示例的培训可以使神经网络抵抗某些方面的对抗攻击。同时,对针对神经网络的对抗攻击还可以揭示神经网络的一些特征,这是一个复杂的高维非线性函数,如先前的工作所述。在这个项目中,我们开发了一种攻击神经网络的一阶方法。与其他一阶攻击进行比较,我们的方法具有更高的成功率。此外,它比二阶攻击和多步级一阶攻击快得多。
translated by 谷歌翻译
Adversarial machine learning has been both a major concern and a hot topic recently, especially with the ubiquitous use of deep neural networks in the current landscape. Adversarial attacks and defenses are usually likened to a cat-and-mouse game in which defenders and attackers evolve over the time. On one hand, the goal is to develop strong and robust deep networks that are resistant to malicious actors. On the other hand, in order to achieve that, we need to devise even stronger adversarial attacks to challenge these defense models. Most of existing attacks employs a single $\ell_p$ distance (commonly, $p\in\{1,2,\infty\}$) to define the concept of closeness and performs steepest gradient ascent w.r.t. this $p$-norm to update all pixels in an adversarial example in the same way. These $\ell_p$ attacks each has its own pros and cons; and there is no single attack that can successfully break through defense models that are robust against multiple $\ell_p$ norms simultaneously. Motivated by these observations, we come up with a natural approach: combining various $\ell_p$ gradient projections on a pixel level to achieve a joint adversarial perturbation. Specifically, we learn how to perturb each pixel to maximize the attack performance, while maintaining the overall visual imperceptibility of adversarial examples. Finally, through various experiments with standardized benchmarks, we show that our method outperforms most current strong attacks across state-of-the-art defense mechanisms, while retaining its ability to remain clean visually.
translated by 谷歌翻译
改善深度神经网络(DNN)对抗对抗示例的鲁棒性是安全深度学习的重要而挑战性问题。跨越现有的防御技术,具有预计梯度体面(PGD)的对抗培训是最有效的。对手训练通过最大化分类丢失,通过最大限度地减少从内在最大化生成的逆势示例的丢失来解决\ excepitient {内部最大化}生成侵略性示例的初始最大优化问题。 。因此,衡量内部最大化的衡量标准是如何对对抗性培训至关重要的。在本文中,我们提出了这种标准,即限制优化(FOSC)的一阶静止条件,以定量评估内部最大化中发现的对抗性实例的收敛质量。通过FOSC,我们发现,为了确保更好的稳健性,必须在培训的\ Texit {稍后的阶段}中具有更好的收敛质量的对抗性示例。然而,在早期阶段,高收敛质量的对抗例子不是必需的,甚至可能导致稳健性差。基于这些观察,我们提出了一种\ Texit {动态}培训策略,逐步提高产生的对抗性实例的收敛质量,这显着提高了对抗性培训的鲁棒性。我们的理论和经验结果表明了该方法的有效性。
translated by 谷歌翻译
对抗训练(AT)在防御对抗例子方面表现出色。最近的研究表明,示例对于AT期间模型的最终鲁棒性并不同样重要,即,所谓的硬示例可以攻击容易表现出比对最终鲁棒性的鲁棒示例更大的影响。因此,保证硬示例的鲁棒性对于改善模型的最终鲁棒性至关重要。但是,定义有效的启发式方法来寻找辛苦示例仍然很困难。在本文中,受到信息瓶颈(IB)原则的启发,我们发现了一个具有高度共同信息及其相关的潜在表示的例子,更有可能受到攻击。基于此观察,我们提出了一种新颖有效的对抗训练方法(Infoat)。鼓励Infoat找到具有高相互信息的示例,并有效利用它们以提高模型的最终鲁棒性。实验结果表明,与几种最先进的方法相比,Infoat在不同数据集和模型之间达到了最佳的鲁棒性。
translated by 谷歌翻译
Adversarial training, in which a network is trained on adversarial examples, is one of the few defenses against adversarial attacks that withstands strong attacks. Unfortunately, the high cost of generating strong adversarial examples makes standard adversarial training impractical on large-scale problems like ImageNet. We present an algorithm that eliminates the overhead cost of generating adversarial examples by recycling the gradient information computed when updating model parameters.Our "free" adversarial training algorithm achieves comparable robustness to PGD adversarial training on the CIFAR-10 and CIFAR-100 datasets at negligible additional cost compared to natural training, and can be 7 to 30 times faster than other strong adversarial training methods. Using a single workstation with 4 P100 GPUs and 2 days of runtime, we can train a robust model for the large-scale ImageNet classification task that maintains 40% accuracy against PGD attacks. The code is available at https://github.com/ashafahi/free_adv_train.
translated by 谷歌翻译
Adversarial examples are perturbed inputs designed to fool machine learning models. Adversarial training injects such examples into training data to increase robustness. To scale this technique to large datasets, perturbations are crafted using fast single-step methods that maximize a linear approximation of the model's loss. We show that this form of adversarial training converges to a degenerate global minimum, wherein small curvature artifacts near the data points obfuscate a linear approximation of the loss. The model thus learns to generate weak perturbations, rather than defend against strong ones. As a result, we find that adversarial training remains vulnerable to black-box attacks, where we transfer perturbations computed on undefended models, as well as to a powerful novel single-step attack that escapes the non-smooth vicinity of the input data via a small random step. We further introduce Ensemble Adversarial Training, a technique that augments training data with perturbations transferred from other models. On ImageNet, Ensemble Adversarial Training yields models with stronger robustness to blackbox attacks. In particular, our most robust model won the first round of the NIPS 2017 competition on Defenses against Adversarial Attacks (Kurakin et al., 2017c). However, subsequent work found that more elaborate black-box attacks could significantly enhance transferability and reduce the accuracy of our models.
translated by 谷歌翻译
单步逆势培训(AT)受到了广泛的关注,因为它被证明是有效和健壮的。然而,存在严重的灾难性过度问题,即反对投影梯度下降(PGD)攻击的强劲准确性突然下降到培训期间的0.5美元。在本文中,我们从优化的新角度来看,首先揭示每个样品和过度装箱的快速增长梯度之间的密切联系,这也可以应用于了解多步骤中的稳健的过度拟合现象。为了控制培训期间梯度的增长,我们提出了一种新的方法,子空间对抗训练(子AT),限制了仔细提取的子空间。它成功地解决了两种过度装备,因此显着提高了鲁棒性。在子空间中,我们还允许单步合并较大的步骤和更大的半径,从而进一步提高了鲁棒性性能。因此,我们实现了最先进的单步性能:我们的纯单步可以达到超过$ \ mathbf {51} \%$鲁棒准确性,反对强大的PGD-50攻击以半径8美元/ CiFar-10上的255美元,甚至超过了标准的多步PGD-10,具有巨大的计算优势。代码已释放$ \脚注{\ url {https://github.com/nblt/sub -at}} $。
translated by 谷歌翻译