沟通对于代理人共享信息并做出良好决定的许多多代理强化学习(MARL)问题很重要。但是,当在存在噪音和潜在攻击者的现实应用程序中部署训练有素的交流代理商时,基于沟通的政策的安全就会成为一个严重的问题,这些问题被忽视。具体而言,如果通过恶意攻击者操纵沟通信息,依靠不信任的交流的代理可能会采取不安全的行动,从而导致灾难性后果。因此,至关重要的是要确保代理人不会被腐败的沟通误导,同时仍然从良性的交流中受益。在这项工作中,我们考虑了一个具有$ n $代理的环境,攻击者可以任意将通信从任何$ c <\ frac {n-1} {2} $代理商转换为受害者代理。对于这种强大的威胁模型,我们通过构建一个消息集结策略来提出可认证的辩护,该策略汇总了多个随机消融的消息集。理论分析表明,这种消息安装策略可以利用良性通信,同时确保对对抗性交流,无论攻击算法如何。在多种环境中的实验证明,我们的防御能够显着改善受过训练的政策对各种攻击的鲁棒性。
translated by 谷歌翻译
在国家观察中最强/最佳的对抗性扰动下评估增强学习(RL)代理的最坏情况性能(在某些限制内)对于理解RL代理商的鲁棒性至关重要。然而,在无论我们都能找到最佳攻击以及我们如何找到它,我们都可以找到最佳的对手是具有挑战性的。对普发拉利RL的现有工作要么使用基于启发式的方法,可以找不到最强大的对手,或者通过将代理人视为环境的一部分来说,直接培训基于RL的对手,这可以找到最佳的对手,但可能会变得棘手大状态空间。本文介绍了一种新的攻击方法,通过设计函数与名为“Director”的RL为基础的学习者的设计函数之间的合作找到最佳攻击。演员工艺在给定的政策扰动方向的状态扰动,主任学会提出最好的政策扰动方向。我们所提出的算法PA-AD,比具有大状态空间的环境中的基于RL的工作,理论上是最佳的,并且明显更有效。经验结果表明,我们建议的PA-AD普遍优惠各种Atari和Mujoco环境中最先进的攻击方法。通过将PA-AD应用于对抗性培训,我们在强烈的对手下实现了多个任务的最先进的经验稳健性。
translated by 谷歌翻译
在过去的十年中,多智能经纪人强化学习(Marl)已经有了重大进展,但仍存在许多挑战,例如高样本复杂性和慢趋同稳定的政策,在广泛的部署之前需要克服,这是可能的。然而,在实践中,许多现实世界的环境已经部署了用于生成策略的次优或启发式方法。一个有趣的问题是如何最好地使用这些方法作为顾问,以帮助改善多代理领域的加强学习。在本文中,我们提供了一个原则的框架,用于将动作建议纳入多代理设置中的在线次优顾问。我们描述了在非传记通用随机游戏环境中提供多种智能强化代理(海军上将)的问题,并提出了两种新的基于Q学习的算法:海军上将决策(海军DM)和海军上将 - 顾问评估(Admiral-AE) ,这使我们能够通过适当地纳入顾问(Admiral-DM)的建议来改善学习,并评估顾问(Admiral-AE)的有效性。我们从理论上分析了算法,并在一般加上随机游戏中提供了关于他们学习的定点保证。此外,广泛的实验说明了这些算法:可以在各种环境中使用,具有对其他相关基线的有利相比的性能,可以扩展到大状态行动空间,并且对来自顾问的不良建议具有稳健性。
translated by 谷歌翻译
数字化和远程连接扩大了攻击面,使网络系统更脆弱。由于攻击者变得越来越复杂和资源丰富,仅仅依赖传统网络保护,如入侵检测,防火墙和加密,不足以保护网络系统。网络弹性提供了一种新的安全范式,可以使用弹性机制来补充保护不足。一种网络弹性机制(CRM)适应了已知的或零日威胁和实际威胁和不确定性,并对他们进行战略性地响应,以便在成功攻击时保持网络系统的关键功能。反馈架构在启用CRM的在线感应,推理和致动过程中发挥关键作用。强化学习(RL)是一个重要的工具,对网络弹性的反馈架构构成。它允许CRM提供有限或没有事先知识和攻击者的有限攻击的顺序响应。在这项工作中,我们审查了Cyber​​恢复力的RL的文献,并讨论了对三种主要类型的漏洞,即姿势有关,与信息相关的脆弱性的网络恢复力。我们介绍了三个CRM的应用领域:移动目标防御,防守网络欺骗和辅助人类安全技术。 RL算法也有漏洞。我们解释了RL的三个漏洞和目前的攻击模型,其中攻击者针对环境与代理商之间交换的信息:奖励,国家观察和行动命令。我们展示攻击者可以通过最低攻击努力来欺骗RL代理商学习邪恶的政策。最后,我们讨论了RL为基于RL的CRM的网络安全和恢复力和新兴应用的未来挑战。
translated by 谷歌翻译
部署到现实世界的自主智能代理必须与对感官输入的对抗性攻击保持强大的态度。在加强学习中的现有工作集中于最小值扰动攻击,这些攻击最初是为了模仿计算机视觉中感知不变性的概念。在本文中,我们注意到,这种最小值扰动攻击可以由受害者琐碎地检测到,因为这些导致观察序列与受害者的行为不符。此外,许多现实世界中的代理商(例如物理机器人)通常在人类主管下运行,这些代理商不容易受到这种扰动攻击的影响。结果,我们建议专注于幻觉攻击,这是一种与受害者的世界模式一致的新型攻击形式。我们为这个新颖的攻击框架提供了正式的定义,在各种条件下探索了其特征,并得出结论,代理必须寻求现实主义反馈以对幻觉攻击具有强大的态度。
translated by 谷歌翻译
值得信赖的强化学习算法应有能力解决挑战性的现实问题,包括{Robustly}处理不确定性,满足{安全}的限制以避免灾难性的失败,以及在部署过程中{prencepentiming}以避免灾难性的失败}。这项研究旨在概述这些可信赖的强化学习的主要观点,即考虑其在鲁棒性,安全性和概括性上的内在脆弱性。特别是,我们给出严格的表述,对相应的方法进行分类,并讨论每个观点的基准。此外,我们提供了一个前景部分,以刺激有希望的未来方向,并简要讨论考虑人类反馈的外部漏洞。我们希望这项调查可以在统一的框架中将单独的研究汇合在一起,并促进强化学习的可信度。
translated by 谷歌翻译
针对AI系统的对抗性例子通过恶意攻击和通过对抗性训练提高鲁棒性的机会构成了风险。在多种设置中,可以通过培训对抗代理以最大程度地减少受害者的奖励来制定对抗性政策。先前的工作研究了黑盒攻击,在这种攻击中,对手只看到州的观察结果,并有效地将受害者视为环境的任何其他部分。在这项工作中,我们实验白盒对抗性政策,以研究代理人的内部状态是否可以为其他代理提供有用的信息。我们做出三项贡献。首先,我们介绍了白盒对抗性政策,其中攻击者可以在每个时间步长观察受害者的内部状态。其次,我们证明了对受害者的白框访问可以在两种经纪环境中进行更好的攻击,从而导致对受害者的初始学习和更高的渐近表现。第三,我们表明,针对白盒对抗性策略的培训可用于使在单一环境中的学习者更强大,以使域转移更强大。
translated by 谷歌翻译
最近的工作表明,深增强学习(DRL)政策易受对抗扰动的影响。对手可以通过扰乱药剂观察到的环境来误导DRL代理商的政策。现有攻击原则上是可行的,但在实践中面临挑战,例如通过太慢,无法实时欺骗DRL政策。我们表明,使用通用的对冲扰动(UAP)方法来计算扰动,独立于应用它们的各个输入,可以有效地欺骗DRL策略。我们描述了三种这样的攻击变体。通过使用三个Atari 2600游戏的广泛评估,我们表明我们的攻击是有效的,因为它们完全降低了三种不同的DRL代理商的性能(高达100%,即使在扰乱的$ L_ infty $绑定时也很小为0.01)。与不同DRL策略的响应时间(平均0.6ms)相比,它比不同DRL策略的响应时间(0.6ms)更快,并且比使用对抗扰动的前攻击更快(平均1.8ms)。我们还表明,我们的攻击技术是高效的,平均地产生0.027ms的在线计算成本。使用涉及机器人运动的两个进一步任务,我们确认我们的结果概括了更复杂的DRL任务。此外,我们证明了已知防御的有效性降低了普遍扰动。我们提出了一种有效的技术,可检测针对DRL政策的所有已知的对抗性扰动,包括本文呈现的所有普遍扰动。
translated by 谷歌翻译
Reinforcement learning allows machines to learn from their own experience. Nowadays, it is used in safety-critical applications, such as autonomous driving, despite being vulnerable to attacks carefully crafted to either prevent that the reinforcement learning algorithm learns an effective and reliable policy, or to induce the trained agent to make a wrong decision. The literature about the security of reinforcement learning is rapidly growing, and some surveys have been proposed to shed light on this field. However, their categorizations are insufficient for choosing an appropriate defense given the kind of system at hand. In our survey, we do not only overcome this limitation by considering a different perspective, but we also discuss the applicability of state-of-the-art attacks and defenses when reinforcement learning algorithms are used in the context of autonomous driving.
translated by 谷歌翻译
虽然现实世界的增强学习应用程序(RL)越来越流行,但安全性和RL系统的鲁棒性需要更多的关注。最近的一项工作表明,在多代理RL环境中,可以将后门触发动作注入受害者(又称Trojan特工),这可能会在看到后门触发动作后立即导致灾难性故障。我们提出了RL后门检测的问题,旨在解决此安全漏洞。我们从广泛的经验研究中得出的一个有趣的观察是一种触发平滑性属性,与后门触发动作相似,正常动作也可以触发特洛伊木马的性能低。受到这一观察的启发,我们提出了一种加强学习解决方案Trojanseeker为特洛伊木马的代理找到近似触发作用,并进一步提出了一种有效的方法,以根据机器的学习来减轻特洛伊木马。实验表明,我们的方法可以正确区分和减轻各种类型的代理和环境中的所有特洛伊木马代理。
translated by 谷歌翻译
由于数据量增加,金融业的快速变化已经彻底改变了数据处理和数据分析的技术,并带来了新的理论和计算挑战。与古典随机控制理论和解决财务决策问题的其他分析方法相比,解决模型假设的财务决策问题,强化学习(RL)的新发展能够充分利用具有更少模型假设的大量财务数据并改善复杂的金融环境中的决策。该调查纸目的旨在审查最近的资金途径的发展和使用RL方法。我们介绍了马尔可夫决策过程,这是许多常用的RL方法的设置。然后引入各种算法,重点介绍不需要任何模型假设的基于价值和基于策略的方法。连接是用神经网络进行的,以扩展框架以包含深的RL算法。我们的调查通过讨论了这些RL算法在金融中各种决策问题中的应用,包括最佳执行,投资组合优化,期权定价和对冲,市场制作,智能订单路由和Robo-Awaring。
translated by 谷歌翻译
Reinforcement learning (RL) is one of the most important branches of AI. Due to its capacity for self-adaption and decision-making in dynamic environments, reinforcement learning has been widely applied in multiple areas, such as healthcare, data markets, autonomous driving, and robotics. However, some of these applications and systems have been shown to be vulnerable to security or privacy attacks, resulting in unreliable or unstable services. A large number of studies have focused on these security and privacy problems in reinforcement learning. However, few surveys have provided a systematic review and comparison of existing problems and state-of-the-art solutions to keep up with the pace of emerging threats. Accordingly, we herein present such a comprehensive review to explain and summarize the challenges associated with security and privacy in reinforcement learning from a new perspective, namely that of the Markov Decision Process (MDP). In this survey, we first introduce the key concepts related to this area. Next, we cover the security and privacy issues linked to the state, action, environment, and reward function of the MDP process, respectively. We further highlight the special characteristics of security and privacy methodologies related to reinforcement learning. Finally, we discuss the possible future research directions within this area.
translated by 谷歌翻译
Cooperative multi-agent reinforcement learning (MARL) has achieved significant results, most notably by leveraging the representation-learning abilities of deep neural networks. However, large centralized approaches quickly become infeasible as the number of agents scale, and fully decentralized approaches can miss important opportunities for information sharing and coordination. Furthermore, not all agents are equal -- in some cases, individual agents may not even have the ability to send communication to other agents or explicitly model other agents. This paper considers the case where there is a single, powerful, \emph{central agent} that can observe the entire observation space, and there are multiple, low-powered \emph{local agents} that can only receive local observations and are not able to communicate with each other. The central agent's job is to learn what message needs to be sent to different local agents based on the global observations, not by centrally solving the entire problem and sending action commands, but by determining what additional information an individual agent should receive so that it can make a better decision. In this work we present our MARL algorithm \algo, describe where it would be most applicable, and implement it in the cooperative navigation and multi-agent walker domains. Empirical results show that 1) learned communication does indeed improve system performance, 2) results generalize to heterogeneous local agents, and 3) results generalize to different reward structures.
translated by 谷歌翻译
我们调查攻击者的效果如何,当它只从受害者的行为中学习时,没有受害者的奖励。在这项工作中,当受害者的动机未知时,我们被攻击者想要行事的情景。我们认为一个启发式方法可以使用攻击者是最大化受害者政策的熵。政策通常不会被滥用,这意味着它可以通过被动地观察受害者来提取。我们以奖励无源勘探算法的形式提供这样的策略,可以在勘探阶段最大化攻击者的熵,然后在规划阶段最大化受害者的经验熵。在我们的实验中,受害者代理商通过政策熵最大化而颠覆,暗示攻击者可能无法访问受害者的奖励成功。因此,仅基于观察行为的无奖励攻击表明,即使受害者的奖励信息受到保护,攻击者的可行性也在不了解受害者的动机。
translated by 谷歌翻译
由于机器学习(ML)系统变得普遍存在,因此保护其安全性至关重要。然而,最近已经证明,动机的对手能够通过使用语义转换扰乱测试数据来误导ML系统。虽然存在丰富的研究机构,但为ML模型提供了可提供的稳健性保证,以防止$ \ ell_p $ norm界限对抗对抗扰动,抵御语义扰动的保证仍然很广泛。在本文中,我们提供了TSS - 一种统一的框架,用于针对一般对抗性语义转换的鲁棒性认证。首先,根据每个转换的性质,我们将常见的变换划分为两类,即可解决的(例如,高斯模糊)和差异可解的(例如,旋转)变换。对于前者,我们提出了特定于转型的随机平滑策略并获得强大的稳健性认证。后者类别涵盖涉及插值错误的变换,我们提出了一种基于分层采样的新方法,以证明稳健性。我们的框架TSS利用这些认证策略并结合了一致性增强的培训,以提供严谨的鲁棒性认证。我们对十种挑战性语义转化进行了广泛的实验,并表明TSS显着优于现有技术。此外,据我们所知,TSS是第一种在大规模想象数据集上实现非竞争认证稳健性的方法。例如,我们的框架在ImageNet上实现了旋转攻击的30.4%认证的稳健准确性(在$ \ PM 30 ^ \ CIC $)。此外,要考虑更广泛的转换,我们展示了TSS对自适应攻击和不可预见的图像损坏,例如CIFAR-10-C和Imagenet-C。
translated by 谷歌翻译
Various types of Multi-Agent Reinforcement Learning (MARL) methods have been developed, assuming that agents' policies are based on true states. Recent works have improved the robustness of MARL under uncertainties from the reward, transition probability, or other partners' policies. However, in real-world multi-agent systems, state estimations may be perturbed by sensor measurement noise or even adversaries. Agents' policies trained with only true state information will deviate from optimal solutions when facing adversarial state perturbations during execution. MARL under adversarial state perturbations has limited study. Hence, in this work, we propose a State-Adversarial Markov Game (SAMG) and make the first attempt to study the fundamental properties of MARL under state uncertainties. We prove that the optimal agent policy and the robust Nash equilibrium do not always exist for an SAMG. Instead, we define the solution concept, robust agent policy, of the proposed SAMG under adversarial state perturbations, where agents want to maximize the worst-case expected state value. We then design a gradient descent ascent-based robust MARL algorithm to learn the robust policies for the MARL agents. Our experiments show that adversarial state perturbations decrease agents' rewards for several baselines from the existing literature, while our algorithm outperforms baselines with state perturbations and significantly improves the robustness of the MARL policies under state uncertainties.
translated by 谷歌翻译
最近的研究表明,深层增强学习剂容易受到代理投入的小对抗扰动,这提出了对在现实世界中部署这些药剂的担忧。为了解决这个问题,我们提出了一个主要的框架,是培训加强学习代理的主要框架,以改善鲁棒性,以防止$ L_P $ -NORM偏见的对抗性攻击。我们的框架与流行的深度加强学习算法兼容,我们用深Q学习,A3C和PPO展示了其性能。我们在三个深度RL基准(Atari,Mujoco和Procgen)上进行实验,以展示我们稳健的培训算法的有效性。我们的径向-RL代理始终如一地占据了不同强度的攻击时的现有方法,并且培训更加计算效率。此外,我们提出了一种新的评估方法,称为贪婪最坏情况奖励(GWC)来衡量深度RL代理商的攻击不良鲁棒性。我们表明GWC可以有效地评估,并且对最糟糕的对抗攻击序列是对奖励的良好估计。用于我们实验的所有代码可在https://github.com/tuomaso/radial_rl_v2上获得。
translated by 谷歌翻译
多智能经纪环境中的单代理强化学习算法不足以促进合作。如果智能代理商共同互动并共同努力解决复杂的问题,则需要计数器非合作行为的方法来促进多个代理的培训。这是合作AI的目标。然而,最近在对抗机器学习中的工作表明,模型(例如,图像分类器)可以很容易地欺骗制作不正确的决策。此外,在合作社的一些过去的研究依赖于陈述的新概念,如公共信仰,加快了解最佳合作行为的学习。因此,合作AI可能会引入以前的机器学习研究中未调查的新弱点。在本文中,我们的贡献包括:(1)争论由人类的社会情报启发的三种算法引入了新的漏洞,独一无二的合作益处,对手可以利用,并显示出对此简单,对抗的实验代理人的信念可能会产生负面影响。本证据表明了社会行为正式陈述的可能性易受对抗性袭击的影响。
translated by 谷歌翻译
沟通可以帮助代理商获得有关他人的信息,以便可以学习更好的协调行为。一些现有的工作会与其他人传达预测的未来轨迹,希望能为其他人做些更好的协调能力提供线索。但是,当对代理人同步处理时,有时会发生循环依赖性,因此很难协调决策。在本文中,我们提出了一种新颖的交流方案,顺序通信(SEQCOMM)。 Seqcomm不同步(高级代理在低级阶段之前做出决定),并有两个通信阶段。在谈判阶段,代理通过传达观测的隐藏状态并比较意图的价值来确定决策的优先级,这是通过对环境动态进行建模来获得的。在发射阶段,高级代理商领导着做出决策并与低级代理商进行交流。从理论上讲,我们证明Seqcomm学到的政策可以单调地改善并融合。从经验上讲,我们表明SEQCOMM在各种多机构合作任务中都优于现有方法。
translated by 谷歌翻译
在各种零和游戏中,自我播放的增强学习已经达到了最先进的,通常是超人的表现。然而,先前的工作发现,反对常规对手的政策能够在灾难性的情况下对对抗性政策失败:一个对受害者明确训练的对手。使用对抗训练的先前防御能够使受害者对特定的对手有牢固的态度,但受害者仍然容易受到新的对手。我们猜想这种限制是由于训练过程中看到的对手多样性不足。我们建议使用基于人口的训练的辩护,以使受害者对抗各种各样的对手。我们在两个低维环境中评估了这种防御对新对手的鲁棒性。通过攻击者训练时间步长以利用受害者的数量来衡量,我们的防守对对抗者提高了对手的鲁棒性。此外,我们表明鲁棒性与对手人群的大小相关。
translated by 谷歌翻译