在本文中,我们提出了一种求解高维椭圆局部微分方程(PDE)的半群方法和基于神经网络的相关特征值问题。对于PDE问题,我们在半群运营商的帮助下将原始方程式重构为变分问题,然后解决神经网络(NN)参数化的变分问题。主要优点是在随机梯度下降训练期间不需要混合的二阶衍生计算,并且由半群运算符自动考虑边界条件。与Pinn \ Cite {Raissi2019physics}和DeepRitz \ Cite {Weinan2018Deep}不同的流行方法,其中仅通过惩罚功能强制执行,因此改变了真实解决方案,所提出的方法能够解决没有惩罚功能的边界条件它即使添加了惩罚功能,它也会给出正确的真实解决方案,感谢semigoup运算符。对于特征值问题,提出了一种原始方法,有效地解析了简单的标量双变量的约束,并与BSDE求解器\ Cite {Han202020Solving}相比,诸如与线性相关的特征值问题之类的问题相比,算法更快地算法SCHR \“Odinger操作员。提供了数值结果以证明所提出的方法的性能。
translated by 谷歌翻译
This paper proposes Friedrichs learning as a novel deep learning methodology that can learn the weak solutions of PDEs via a minmax formulation, which transforms the PDE problem into a minimax optimization problem to identify weak solutions. The name "Friedrichs learning" is for highlighting the close relationship between our learning strategy and Friedrichs theory on symmetric systems of PDEs. The weak solution and the test function in the weak formulation are parameterized as deep neural networks in a mesh-free manner, which are alternately updated to approach the optimal solution networks approximating the weak solution and the optimal test function, respectively. Extensive numerical results indicate that our mesh-free method can provide reasonably good solutions to a wide range of PDEs defined on regular and irregular domains in various dimensions, where classical numerical methods such as finite difference methods and finite element methods may be tedious or difficult to be applied.
translated by 谷歌翻译
求解高维局部微分方程是经济学,科学和工程的反复挑战。近年来,已经开发了大量的计算方法,其中大多数依赖于蒙特卡罗采样和基于深度学习的近似的组合。对于椭圆形和抛物线问题,现有方法可以广泛地分类为依赖于$ \ Texit {向后随机微分方程} $(BSDES)和旨在最小化回归$ L ^ 2 $ -Error( $ \ textit {物理信息的神经网络} $,pinns)。在本文中,我们审查了文献,并提出了一种基于新型$ \ Texit的方法{扩散丢失} $,在BSDES和Pinns之间插值。我们的贡献为对高维PDE的数值方法的统一理解开辟了门,以及结合BSDES和PINNS强度的实施方式。我们还向特征值问题提供概括并进行广泛的数值研究,包括计算非线性SCHR \“odinger运营商的地面状态和分子动态相关的委托功能的计算。
translated by 谷歌翻译
We propose, Monte Carlo Nonlocal physics-informed neural networks (MC-Nonlocal-PINNs), which is a generalization of MC-fPINNs in \cite{guo2022monte}, for solving general nonlocal models such as integral equations and nonlocal PDEs. Similar as in MC-fPINNs, our MC-Nonlocal-PINNs handle the nonlocal operators in a Monte Carlo way, resulting in a very stable approach for high dimensional problems. We present a variety of test problems, including high dimensional Volterra type integral equations, hypersingular integral equations and nonlocal PDEs, to demonstrate the effectiveness of our approach.
translated by 谷歌翻译
在本文中,开发了用于求解具有delta功能奇异源的椭圆方程的浅丽兹型神经网络。目前的工作中有三个新颖的功能。即,(i)Delta函数奇异性自然删除,(ii)级别集合函数作为功能输入引入,(iii)它完全浅,仅包含一个隐藏层。我们首先介绍问题的能量功能,然后转换奇异源对沿界面的常规表面积分的贡献。以这种方式,可以自然删除三角洲函数,而无需引入传统正规化方法(例如众所周知的沉浸式边界方法)中常用的函数。然后将最初的问题重新重新审议为最小化问题。我们提出了一个带有一个隐藏层的浅丽兹型神经网络,以近似能量功能的全局最小化器。结果,通过最大程度地减少能源的离散版本的损耗函数来训练网络。此外,我们将界面的级别设置函数作为网络的功能输入,并发现它可以显着提高训练效率和准确性。我们执行一系列数值测试,以显示本方法的准确性及其在不规则域和较高维度中问题的能力。
translated by 谷歌翻译
在这项工作中,我们开发了一个有效的求解器,该求解器基于泊松方程的深神经网络,具有可变系数和由Dirac Delta函数$ \ delta(\ Mathbf {x})$表示的可变系数和单数来源。这类问题涵盖了一般点源,线路源和点线组合,并且具有广泛的实际应用。所提出的方法是基于将真实溶液分解为一个单一部分,该部分使用拉普拉斯方程的基本解决方案在分析上以分析性的方式,以及一个正常零件,该零件满足适合的椭圆形PDE,并使用更平滑的来源,然后使用深层求解常规零件,然后使用深层零件来求解。丽兹法。建议提出遵守路径遵循的策略来选择罚款参数以惩罚Dirichlet边界条件。提出了具有点源,线源或其组合的两维空间和多维空间中的广泛数值实验,以说明所提出的方法的效率,并提供了一些现有方法的比较研究,这清楚地表明了其竞争力的竞争力具体的问题类别。此外,我们简要讨论该方法的误差分析。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
在本文中,我们介绍了一种基于距离场的新方法,以确保物理知识的深神经网络中的边界条件。众所周知,满足网状紫外线和颗粒方法中的Dirichlet边界条件的挑战是众所周知的。该问题在物理信息的开发中也是相关的,用于解决部分微分方程的解。我们在人工神经网络中介绍几何意识的试验功能,以改善偏微分方程的深度学习培训。为此,我们使用来自建设性的实体几何(R函数)和广义的等级坐标(平均值潜在字段)的概念来构建$ \ phi $,对域边界的近似距离函数。要恰好施加均匀的Dirichlet边界条件,试验函数乘以\ PHI $乘以PINN近似,并且通过Transfinite插值的泛化用于先验满足的不均匀Dirichlet(必要),Neumann(自然)和Robin边界复杂几何形状的条件。在这样做时,我们消除了与搭配方法中的边界条件满意相关的建模误差,并确保以ritz方法点点到运动可视性。我们在具有仿射和弯曲边界的域上的线性和非线性边值问题的数值解。 1D中的基准问题,用于线性弹性,平面扩散和光束弯曲;考虑了泊松方程的2D,考虑了双音态方程和非线性欧克隆方程。该方法延伸到更高的尺寸,并通过在4D超立方套上解决彼此与均匀的Dirichlet边界条件求泊松问题来展示其使用。该研究提供了用于网眼分析的途径,以在没有域离散化的情况下在确切的几何图形上进行。
translated by 谷歌翻译
High-dimensional PDEs have been a longstanding computational challenge. We propose to solve highdimensional PDEs by approximating the solution with a deep neural network which is trained to satisfy the differential operator, initial condition, and boundary conditions. Our algorithm is meshfree, which is key since meshes become infeasible in higher dimensions. Instead of forming a mesh, the neural network is trained on batches of randomly sampled time and space points. The algorithm is tested on a class of high-dimensional free boundary PDEs, which we are able to accurately solve in up to 200 dimensions. The algorithm is also tested on a high-dimensional Hamilton-Jacobi-Bellman PDE and Burgers' equation. The deep learning algorithm approximates the general solution to the Burgers' equation for a continuum of different boundary conditions and physical conditions (which can be viewed as a high-dimensional space). We call the algorithm a "Deep Galerkin Method (DGM)" since it is similar in spirit to Galerkin methods, with the solution approximated by a neural network instead of a linear combination of basis functions. In addition, we prove a theorem regarding the approximation power of neural networks for a class of quasilinear parabolic PDEs.
translated by 谷歌翻译
在这项工作中,我们提出了一种深度自适应采样(DAS)方法,用于求解部分微分方程(PDE),其中利用深神经网络近似PDE和深生成模型的解决方案,用于生成改进训练集的新的搭配点。 DAS的整体过程由两个组件组成:通过最小化训练集中的搭配点上的剩余损失来解决PDE,并生成新的训练集,以进一步提高电流近似解的准确性。特别地,我们将残差作为概率密度函数进行处理,并用一个被称为Krnet的深生成模型近似它。来自Krnet的新样品与残留物诱导的分布一致,即,更多样品位于大残留的区域中,并且较少的样品位于小残余区域中。类似于经典的自适应方法,例如自适应有限元,Krnet作为引导训练集的改进的错误指示器。与用均匀分布的搭配点获得的神经网络近似相比,发达的算法可以显着提高精度,特别是对于低规律性和高维问题。我们展示了一个理论分析,表明所提出的DAS方法可以减少误差并展示其与数值实验的有效性。
translated by 谷歌翻译
在本文中,我们提出了一种无网格的方法来解决完整的Stokes方程,该方程用非线性流变学模拟了冰川运动。我们的方法是受[12]中提出的深里兹方法的启发。我们首先将非牛顿冰流模型的解决方案提出到具有边界约束的变分积分的最小化器中。然后,通过一个深神经网络近似溶液,该网络的损失函数是变异积分加上混合边界条件的软约束。我们的方法不需要引入网格网格或基础函数来评估损失函数,而只需要统一的域和边界采样器。为了解决现实世界缩放中的不稳定性,我们将网络的输入重新归一致,并平衡每个单独边界的正则化因子。最后,我们通过几个数值实验说明了我们方法的性能,包括具有分析解决方案的2D模型,具有真实缩放的Arolla Glacier模型和具有周期性边界条件的3D模型。数值结果表明,我们提出的方法有效地解决了通过非线性流变学引起的冰川建模引起的非牛顿力学。
translated by 谷歌翻译
设计高维偏微分方程(PDE)的高效和准确的数值求解器仍然是计算科学和工程中的一个具有挑战性且重要的主题,这主要是由于“设计数字方案”在设计中的“维度诅咒”。一种新方法,在具有有限的分析表达式的功能空间中寻求近似PDE解决方案,因此,该方法被命名为有限的表达方法(FEX)。在近似理论中证明,FEX可以避免维克斯的诅咒。作为概念的证明,提出了一种深入的增强学习方法,以在不同维度上为各种高维PDE实施FEX,以在维度和可依式的时间复杂性中具有内存复杂性多项式的高度甚至机器的精度。具有有限解决方案的近似解决方案分析表达式还提供了对地面真相PDE解决方案的可解释见解,这可以进一步帮助提高对物理系统的理解,并为精制解决方案设计后处理技术。
translated by 谷歌翻译
本文提出了一个无网格的计算框架和机器学习理论,用于在未知的歧管上求解椭圆形PDE,并根据扩散地图(DM)和深度学习确定点云。 PDE求解器是作为监督的学习任务制定的,以解决最小二乘回归问题,该问题施加了近似PDE的代数方程(如果适用)。该代数方程涉及通过DM渐近扩展获得的图形拉平型矩阵,该基质是二阶椭圆差差算子的一致估计器。最终的数值方法是解决受神经网络假设空间解决方案的高度非凸经验最小化问题。在体积良好的椭圆PDE设置中,当假设空间由具有无限宽度或深度的神经网络组成时,我们表明,经验损失函数的全球最小化器是大型训练数据极限的一致解决方案。当假设空间是一个两层神经网络时,我们表明,对于足够大的宽度,梯度下降可以识别经验损失函数的全局最小化器。支持数值示例证明了解决方案的收敛性,范围从具有低和高共限度的简单歧管到具有和没有边界的粗糙表面。我们还表明,所提出的NN求解器可以在具有概括性误差的新数据点上稳健地概括PDE解决方案,这些误差几乎与训练错误相同,从而取代了基于Nystrom的插值方法。
translated by 谷歌翻译
Navier-Stokes方程是描述液体和空气等流体运动的重要部分微分方程。由于Navier-Stokes方程的重要性,有效的数值方案的发展对科学和工程师都很重要。最近,随着AI技术的开发,已经设计了几种方法来整合深层神经网络,以模拟和推断不可压缩的Navier-Stokes方程所控制的流体动力学,这些方程可以以无网状和可不同的方式加速模拟或推断过程。在本文中,我们指出,现有的深入Navier-Stokes知情方法的能力仅限于处理非平滑或分数方程,这在现实中是两种关键情况。为此,我们提出了\ emph {深入的随机涡流方法}(drvm),该方法将神经网络与随机涡流动力学系统相结合,等效于Navier-Stokes方程。具体而言,随机涡流动力学激发了用于训练神经网络的基于蒙特卡洛的损失函数,从而避免通过自动差异计算衍生物。因此,DRVM不仅可以有效地求解涉及粗糙路径,非差异初始条件和分数运算符的Navier-Stokes方程,而且还继承了基于深度学习的求解器的无网格和可区分优势。我们对凯奇问题,参数求解器学习以及2-D和3-D不可压缩的Navier-Stokes方程的逆问题进行实验。所提出的方法为Navier-Stokes方程的仿真和推断提供了准确的结果。特别是对于包括奇异初始条件的情况,DRVM明显胜过现有的PINN方法。
translated by 谷歌翻译
在本文中,我们提出了三种方法方法方法神经网络(PMNN),逆功率方法神经网络(IPMNN),并转移了逆力方法神经网络(SIPMNN)与功率方法,逆力法和转向逆动力方法求解eigenvalue eigenvalue主要的特征值,最小的特征值和最小的零特征值的问题。这些方法与传统方法共享相似的精神,但是差异是通过自动分化(AD),神经网络学到的本征函数实现的差异操作员以及通过优化特定定义的损失函数实现的迭代。我们在高维度的几个数值示例中检查了我们方法的适用性和准确性。通过我们的多维问题方法获得的数值结果表明,我们的方法可以提供准确的本征值和本征函数近似值。
translated by 谷歌翻译
Deep learning has achieved remarkable success in diverse applications; however, its use in solving partial differential equations (PDEs) has emerged only recently. Here, we present an overview of physics-informed neural networks (PINNs), which embed a PDE into the loss of the neural network using automatic differentiation. The PINN algorithm is simple, and it can be applied to different types of PDEs, including integro-differential equations, fractional PDEs, and stochastic PDEs. Moreover, from the implementation point of view, PINNs solve inverse problems as easily as forward problems. We propose a new residual-based adaptive refinement (RAR) method to improve the training efficiency of PINNs. For pedagogical reasons, we compare the PINN algorithm to a standard finite element method. We also present a Python library for PINNs, DeepXDE, which is designed to serve both as an education tool to be used in the classroom as well as a research tool for solving problems in computational science and engineering. Specifically, DeepXDE can solve forward problems given initial and boundary conditions, as well as inverse problems given some extra measurements. DeepXDE supports complex-geometry domains based on the technique of constructive solid geometry, and enables the user code to be compact, resembling closely the mathematical formulation. We introduce the usage of DeepXDE and its customizability, and we also demonstrate the capability of PINNs and the user-friendliness of DeepXDE for five different examples. More broadly, DeepXDE contributes to the more rapid development of the emerging Scientific Machine Learning field.
translated by 谷歌翻译
本文介绍了一种基于Krnet(ADDA-KR)的自适应深度近似策略,用于求解稳态Fokker-Planck(F-P)方程。 F-P方程通常是高维度和在无限域上定义的,这限制了基于传统网格的数值方法的应用。通过Knothe-Rosenblatt重新排列,我们的新提出的基于流的生成模型称为KrNet,提供了一种概率密度函数的家族,以作为Fokker-Planck方程的有效解决方案候选者,这与传统的计算方法较弱的维度依赖性较弱并且可以有效地估计一般的高维密度函数。为了获得用于F-P方程的近似的有效随机搭配点,我们开发了一种自适应采样过程,其中使用每次迭代的近似密度函数来迭代地生成样本。我们介绍了ADDA-KR的一般框架,验证了其准确性并通过数值实验展示了其效率。
translated by 谷歌翻译
物理知情的神经网络(PINN)要求定期的基础PDE解决方案,以确保准确的近似值。因此,它们可能会在近似PDE的不连续溶液(例如非线性双曲方程)的情况下失败。为了改善这一点,我们提出了一种新颖的PINN变体,称为弱PINN(WPINNS),以准确地近似标量保护定律的熵溶液。WPINN是基于近似于根据Kruzkhov熵定义的残留的最小最大优化问题的解决方案,以确定近似熵解决方案的神经网络的参数以及测试功能。我们证明了WPINN发生的误差的严格界限,并通过数值实验说明了它们的性能,以证明WPINN可以准确地近似熵解决方案。
translated by 谷歌翻译
部分微分方程通常用于模拟各种物理现象,例如热扩散,波传播,流体动力学,弹性,电动力学和图像处理,并且已经开发了许多分析方法或传统的数值方法并广泛用于其溶液。受深度学习对科学和工程研究的迅速影响的启发,在本文中,我们提出了一个新型的神经网络GF-NET,以无监督的方式学习绿色的线性反应扩散方程的功能。所提出的方法克服了通过使用物理信息的方法和绿色功能的对称性来查找任意域上方程函数的挑战。结果,它尤其导致了在不同边界条件和来源下解决目标方程的有效方法。我们还通过正方形,环形和L形域中的实验证明了所提出的方法的有效性。
translated by 谷歌翻译
We investigate the parameterization of deep neural networks that by design satisfy the continuity equation, a fundamental conservation law. This is enabled by the observation that any solution of the continuity equation can be represented as a divergence-free vector field. We hence propose building divergence-free neural networks through the concept of differential forms, and with the aid of automatic differentiation, realize two practical constructions. As a result, we can parameterize pairs of densities and vector fields that always exactly satisfy the continuity equation, foregoing the need for extra penalty methods or expensive numerical simulation. Furthermore, we prove these models are universal and so can be used to represent any divergence-free vector field. Finally, we experimentally validate our approaches by computing neural network-based solutions to fluid equations, solving for the Hodge decomposition, and learning dynamical optimal transport maps.
translated by 谷歌翻译