在本文中,我们提出了三种方法方法方法神经网络(PMNN),逆功率方法神经网络(IPMNN),并转移了逆力方法神经网络(SIPMNN)与功率方法,逆力法和转向逆动力方法求解eigenvalue eigenvalue主要的特征值,最小的特征值和最小的零特征值的问题。这些方法与传统方法共享相似的精神,但是差异是通过自动分化(AD),神经网络学到的本征函数实现的差异操作员以及通过优化特定定义的损失函数实现的迭代。我们在高维度的几个数值示例中检查了我们方法的适用性和准确性。通过我们的多维问题方法获得的数值结果表明,我们的方法可以提供准确的本征值和本征函数近似值。
translated by 谷歌翻译
在本文中,我们提出了一种求解高维椭圆局部微分方程(PDE)的半群方法和基于神经网络的相关特征值问题。对于PDE问题,我们在半群运营商的帮助下将原始方程式重构为变分问题,然后解决神经网络(NN)参数化的变分问题。主要优点是在随机梯度下降训练期间不需要混合的二阶衍生计算,并且由半群运算符自动考虑边界条件。与Pinn \ Cite {Raissi2019physics}和DeepRitz \ Cite {Weinan2018Deep}不同的流行方法,其中仅通过惩罚功能强制执行,因此改变了真实解决方案,所提出的方法能够解决没有惩罚功能的边界条件它即使添加了惩罚功能,它也会给出正确的真实解决方案,感谢semigoup运算符。对于特征值问题,提出了一种原始方法,有效地解析了简单的标量双变量的约束,并与BSDE求解器\ Cite {Han202020Solving}相比,诸如与线性相关的特征值问题之类的问题相比,算法更快地算法SCHR \“Odinger操作员。提供了数值结果以证明所提出的方法的性能。
translated by 谷歌翻译
物理知识的神经网络(PINN)在解决涉及部分微分方程的前进和反问题方面表现出了希望。尽管最近在扩展PINN可以解决的问题类别方面取得了进展,但大多数现有用例都涉及简单的几何域。迄今为止,还没有明确的方法来告知Pinns有关解决问题的域拓扑。在这项工作中,我们提出了一种基于拉普拉斯 - 贝特拉米操作员的特征函数的PINN的新型位置编码机制。该技术允许为代表给定对象几何形状的神经网络创建一个输入空间。我们近似具有有限元素的偏微分方程的特征函数以及涉及的操作员。我们对所提出的方法进行了广泛的测试和比较,以复杂形状(例如线圈,散热器和兔子),具有不同的物理学,例如二基核方程和传热。我们还研究了我们方法对所使用的本征函数数量的敏感性,以及用于本征函数和基础操作员的离散化。我们的结果表明,在传统的PINN无法产生有意义的解决方案的情况下,与地面真相数据非常吻合。我们设想这种新技术将扩大PINNS的有效性,以更现实的应用。
translated by 谷歌翻译
Deep learning has achieved remarkable success in diverse applications; however, its use in solving partial differential equations (PDEs) has emerged only recently. Here, we present an overview of physics-informed neural networks (PINNs), which embed a PDE into the loss of the neural network using automatic differentiation. The PINN algorithm is simple, and it can be applied to different types of PDEs, including integro-differential equations, fractional PDEs, and stochastic PDEs. Moreover, from the implementation point of view, PINNs solve inverse problems as easily as forward problems. We propose a new residual-based adaptive refinement (RAR) method to improve the training efficiency of PINNs. For pedagogical reasons, we compare the PINN algorithm to a standard finite element method. We also present a Python library for PINNs, DeepXDE, which is designed to serve both as an education tool to be used in the classroom as well as a research tool for solving problems in computational science and engineering. Specifically, DeepXDE can solve forward problems given initial and boundary conditions, as well as inverse problems given some extra measurements. DeepXDE supports complex-geometry domains based on the technique of constructive solid geometry, and enables the user code to be compact, resembling closely the mathematical formulation. We introduce the usage of DeepXDE and its customizability, and we also demonstrate the capability of PINNs and the user-friendliness of DeepXDE for five different examples. More broadly, DeepXDE contributes to the more rapid development of the emerging Scientific Machine Learning field.
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
求解高维局部微分方程是经济学,科学和工程的反复挑战。近年来,已经开发了大量的计算方法,其中大多数依赖于蒙特卡罗采样和基于深度学习的近似的组合。对于椭圆形和抛物线问题,现有方法可以广泛地分类为依赖于$ \ Texit {向后随机微分方程} $(BSDES)和旨在最小化回归$ L ^ 2 $ -Error( $ \ textit {物理信息的神经网络} $,pinns)。在本文中,我们审查了文献,并提出了一种基于新型$ \ Texit的方法{扩散丢失} $,在BSDES和Pinns之间插值。我们的贡献为对高维PDE的数值方法的统一理解开辟了门,以及结合BSDES和PINNS强度的实施方式。我们还向特征值问题提供概括并进行广泛的数值研究,包括计算非线性SCHR \“odinger运营商的地面状态和分子动态相关的委托功能的计算。
translated by 谷歌翻译
This paper proposes Friedrichs learning as a novel deep learning methodology that can learn the weak solutions of PDEs via a minmax formulation, which transforms the PDE problem into a minimax optimization problem to identify weak solutions. The name "Friedrichs learning" is for highlighting the close relationship between our learning strategy and Friedrichs theory on symmetric systems of PDEs. The weak solution and the test function in the weak formulation are parameterized as deep neural networks in a mesh-free manner, which are alternately updated to approach the optimal solution networks approximating the weak solution and the optimal test function, respectively. Extensive numerical results indicate that our mesh-free method can provide reasonably good solutions to a wide range of PDEs defined on regular and irregular domains in various dimensions, where classical numerical methods such as finite difference methods and finite element methods may be tedious or difficult to be applied.
translated by 谷歌翻译
在本文中,开发了一种新的不连续性捕获浅神经网络(DCSNN),以近似于$ d $ d $二维的分段连续功能和解决椭圆界面问题。当前网络中有三个新颖的功能。即,(i)跳跃不连续性被准确捕获,(ii)它完全浅,仅包含一个隐藏层,(iii)它完全无网格,用于求解部分微分方程。这里的关键想法是,可以将$ d $维的分段连续函数扩展到$(d+1)$ - 尺寸空间中定义的连续函数,其中增强坐标变量标记每个子域的零件。然后,我们构建一个浅神经网络来表达这一新功能。由于仅使用一个隐藏层,因此训练参数(权重和偏见)的数量与隐藏层中使用的维度和神经元线性缩放。为了解决椭圆界面问题,通过最大程度地减少由管理方程式,边界条件和接口跳跃条件组成的均方误差损失来训练网络。我们执行一系列数值测试以证明本网络的准确性。我们的DCSNN模型由于仅需要训练的参数数量中等(在所有数值示例中使用了几百个参数),因此很有效,结果表明准确性良好。与传统的基于网格的浸入界面方法(IIM)获得的结果相比,该方法专门针对椭圆界面问题而设计,我们的网络模型比IIM表现出更好的精度。我们通过解决一个六维问题来结论,以证明本网络在高维应用中的能力。
translated by 谷歌翻译
物理信息的神经网络(PINN)已证明是解决部分微分方程(PDE)的前进和反问题的有效工具。 PINN将PDE嵌入神经网络的丢失中,并在一组散射的残留点上评估该PDE损失。这些点的分布对于PINN的性能非常重要。但是,在现有的针对PINN的研究中,仅使用了一些简单的残留点抽样方法。在这里,我们介绍了两类采样的全面研究:非自适应均匀抽样和适应性非均匀抽样。我们考虑了六个均匀的采样,包括(1)稳定的均匀网格,(2)均匀随机采样,(3)拉丁语超立方体采样,(4)Halton序列,(5)Hammersley序列和(6)Sobol序列。我们还考虑了用于均匀抽样的重采样策略。为了提高采样效率和PINN的准确性,我们提出了两种新的基于残余的自适应抽样方法:基于残留的自适应分布(RAD)和基于残留的自适应改进,并具有分布(RAR-D),它们会动态地改善基于训练过程中PDE残差的剩余点。因此,我们总共考虑了10种不同的采样方法,包括6种非自适应均匀抽样,重采样的均匀抽样,两种提议的自适应抽样和现有的自适应抽样。我们广泛测试了这些抽样方法在许多设置中的四个正向问题和两个反问题的性能。我们在本研究中介绍的数值结果总结了6000多个PINN的模拟。我们表明,RAD和RAR-D的提议的自适应采样方法显着提高了PINN的准确性,其残留点较少。在这项研究中获得的结果也可以用作选择抽样方法的实用指南。
translated by 谷歌翻译
作为深度学习的典型{Application},物理知识的神经网络(PINN){已成功用于找到部分微分方程(PDES)的数值解决方案(PDES),但是如何提高有限准确性仍然是PINN的巨大挑战。 。在这项工作中,我们引入了一种新方法,对称性增强物理学知情的神经网络(SPINN),其中PDE的谎言对称性诱导的不变表面条件嵌入PINN的损失函数中,以提高PINN的准确性。我们分别通过两组十组独立数值实验来测试SPINN的有效性,分别用于热方程,Korteweg-De Vries(KDV)方程和潜在的汉堡{方程式},这表明Spinn的性能比PINN更好,而PINN的训练点和更简单的结构都更好神经网络。此外,我们讨论了Spinn的计算开销,以PINN的相对计算成本,并表明Spinn的训练时间没有明显的增加,甚至在某些情况下还不是PINN。
translated by 谷歌翻译
部分微分方程通常用于模拟各种物理现象,例如热扩散,波传播,流体动力学,弹性,电动力学和图像处理,并且已经开发了许多分析方法或传统的数值方法并广泛用于其溶液。受深度学习对科学和工程研究的迅速影响的启发,在本文中,我们提出了一个新型的神经网络GF-NET,以无监督的方式学习绿色的线性反应扩散方程的功能。所提出的方法克服了通过使用物理信息的方法和绿色功能的对称性来查找任意域上方程函数的挑战。结果,它尤其导致了在不同边界条件和来源下解决目标方程的有效方法。我们还通过正方形,环形和L形域中的实验证明了所提出的方法的有效性。
translated by 谷歌翻译
由于应用程序可用的数据越来越多,因此需要更有能力的学习模型来进行数据处理。我们遇到的数据通常具有某些嵌入式稀疏结构。也就是说,如果它们以适当的基础表示,则它们的能量可以集中于少数基础函数。本文致力于通过深层神经网络(DNN)具有稀疏的正则化具有多个参数的非线性偏微分方程解的自适应近似。指出DNN具有固有的多尺度结构,通过使用多个参数的惩罚来有利于自适应表达功能,我们开发具有多尺度稀疏正则化(SDNN)的DNN,用于有效地表示具有一定单调的功能。然后,我们将提出的SDNN应用于汉堡方程和schr \“ odinger方程的数值解。数值示例确认提出的SDNN生成的溶液稀疏而准确。
translated by 谷歌翻译
在本文中,我们介绍了一种基于距离场的新方法,以确保物理知识的深神经网络中的边界条件。众所周知,满足网状紫外线和颗粒方法中的Dirichlet边界条件的挑战是众所周知的。该问题在物理信息的开发中也是相关的,用于解决部分微分方程的解。我们在人工神经网络中介绍几何意识的试验功能,以改善偏微分方程的深度学习培训。为此,我们使用来自建设性的实体几何(R函数)和广义的等级坐标(平均值潜在字段)的概念来构建$ \ phi $,对域边界的近似距离函数。要恰好施加均匀的Dirichlet边界条件,试验函数乘以\ PHI $乘以PINN近似,并且通过Transfinite插值的泛化用于先验满足的不均匀Dirichlet(必要),Neumann(自然)和Robin边界复杂几何形状的条件。在这样做时,我们消除了与搭配方法中的边界条件满意相关的建模误差,并确保以ritz方法点点到运动可视性。我们在具有仿射和弯曲边界的域上的线性和非线性边值问题的数值解。 1D中的基准问题,用于线性弹性,平面扩散和光束弯曲;考虑了泊松方程的2D,考虑了双音态方程和非线性欧克隆方程。该方法延伸到更高的尺寸,并通过在4D超立方套上解决彼此与均匀的Dirichlet边界条件求泊松问题来展示其使用。该研究提供了用于网眼分析的途径,以在没有域离散化的情况下在确切的几何图形上进行。
translated by 谷歌翻译
我们提出了一种基于具有子域(CENN)的神经网络的保守能量方法,其中允许通过径向基函数(RBF),特定解决方案神经网络和通用神经网络构成满足没有边界惩罚的基本边界条件的可允许功能。与具有子域的强形式Pinn相比,接口处的损耗术语具有较低的阶数。所提出的方法的优点是效率更高,更准确,更小的近双达,而不是具有子域的强形式Pinn。所提出的方法的另一个优点是它可以基于可允许功能的特殊结构适用于复杂的几何形状。为了分析其性能,所提出的方法宫殿用于模拟代表性PDE,这些实施例包括强不连续性,奇异性,复杂边界,非线性和异质问题。此外,在处理异质问题时,它优于其他方法。
translated by 谷歌翻译
本文提出了一个无网格的计算框架和机器学习理论,用于在未知的歧管上求解椭圆形PDE,并根据扩散地图(DM)和深度学习确定点云。 PDE求解器是作为监督的学习任务制定的,以解决最小二乘回归问题,该问题施加了近似PDE的代数方程(如果适用)。该代数方程涉及通过DM渐近扩展获得的图形拉平型矩阵,该基质是二阶椭圆差差算子的一致估计器。最终的数值方法是解决受神经网络假设空间解决方案的高度非凸经验最小化问题。在体积良好的椭圆PDE设置中,当假设空间由具有无限宽度或深度的神经网络组成时,我们表明,经验损失函数的全球最小化器是大型训练数据极限的一致解决方案。当假设空间是一个两层神经网络时,我们表明,对于足够大的宽度,梯度下降可以识别经验损失函数的全局最小化器。支持数值示例证明了解决方案的收敛性,范围从具有低和高共限度的简单歧管到具有和没有边界的粗糙表面。我们还表明,所提出的NN求解器可以在具有概括性误差的新数据点上稳健地概括PDE解决方案,这些误差几乎与训练错误相同,从而取代了基于Nystrom的插值方法。
translated by 谷歌翻译
Deep operator network (DeepONet) has demonstrated great success in various learning tasks, including learning solution operators of partial differential equations. In particular, it provides an efficient approach to predict the evolution equations in a finite time horizon. Nevertheless, the vanilla DeepONet suffers from the issue of stability degradation in the long-time prediction. This paper proposes a {\em transfer-learning} aided DeepONet to enhance the stability. Our idea is to use transfer learning to sequentially update the DeepONets as the surrogates for propagators learned in different time frames. The evolving DeepONets can better track the varying complexities of the evolution equations, while only need to be updated by efficient training of a tiny fraction of the operator networks. Through systematic experiments, we show that the proposed method not only improves the long-time accuracy of DeepONet while maintaining similar computational cost but also substantially reduces the sample size of the training set.
translated by 谷歌翻译
基于神经网络的求解部分微分方程的方法由于其简单性和灵活性来表示偏微分方程的解决方案而引起了相当大的关注。在训练神经网络时,网络倾向于学习与低频分量相对应的全局特征,而高频分量以较慢的速率(F原理)近似。对于解决方案包含广泛尺度的一类等式,由于无法捕获高频分量,网络训练过程可能会遭受缓慢的收敛性和低精度。在这项工作中,我们提出了一种分层方法来提高神经网络解决方案的收敛速率和准确性。所提出的方法包括多训练水平,其中引导新引入的神经网络来学习先前级别近似的残余。通过神经网络训练过程的性​​质,高级校正倾向于捕获高频分量。我们通过一套线性和非线性部分微分方程验证所提出的分层方法的效率和稳健性。
translated by 谷歌翻译
使用深层学习方法来解决PDE是完全扩张的领域。特别是,物理知识的神经网络,其实现物理域的采样并使用惩罚偏差方程的违反违反部分微分方程的丢失函数。然而,为了解决实际应用中遇到的大规模问题并与PDE的现有数值方法竞争,重要的是设计具有良好可扩展性的平行算法。在传统领域分解方法(DDM)的静脉中,我们认为最近提出的深层DDM方法。我们展示了这种方法的扩展,依赖于使用粗糙空间校正,类似于传统DDM求解器中所做的内容。我们的研究表明,当由于每个迭代时子域之间的瞬时信息交换而增加,当子域的数量增加时,粗校正能够缓解求解器的收敛性的恶化。实验结果表明,我们的方法引起了原始的深度DDM方法的显着加速,降低了额外的计算成本。
translated by 谷歌翻译
本文侧重于各种技术来查找替代近似方法,可以普遍用于各种CFD问题,但计算成本低,运行时低。在机器学习领域中探讨了各种技术,以衡量实现核心野心的效用。稳定的平流扩散问题已被用作测试用例,以了解方法可以提供解决方案的复杂程度。最终,该重点留在物理知识的机器学习技术上,其中求解微分方程是可能的,而无需计算数据。 i.e的普遍方法拉加里斯et.al.和M. Raissi et.al彻底探讨。普遍存在的方法无法解决占主导地位问题。提出了一种称为分布物理知识神经网络(DPINN)的物理知情方法,以解决平流的主导问题。它通过分割域并将其他基于物理的限制引入均方平方损耗条款来增加旧方法的可执行和能力。完成各种实验以探索结束与该方法结束的最终可能性。也完成了参数研究以了解方法对不同可调参数的方法。该方法经过稳定的平流 - 扩散问题和不稳定的方脉冲问题。记录非常准确的结果。极端学习机(ELM)是一种以可调谐参数成本的快速神经网络算法。在平面扩散问题上测试所提出的模型的基于ELM的变体。榆树使得复杂优化更简单,并且由于该方法是非迭代的,因此解决方案被记录在单一镜头中。基于ELM的变体似乎比简单的DPINN方法更好。在本文中,将来同时进行各种发展的范围。
translated by 谷歌翻译
深入学习被证明是通过物理信息的神经网络(PINNS)求解部分微分方程(PDE)的有效工具。 Pinns将PDE残差嵌入到神经网络的损耗功能中,已成功用于解决各种前向和逆PDE问题。然而,第一代Pinns的一个缺点是它们通常具有许多训练点即使具有有限的准确性。在这里,我们提出了一种新的方法,梯度增强的物理信息的神经网络(GPInns),用于提高Pinns的准确性和培训效率。 GPInns利用PDE残差的梯度信息,并将梯度嵌入损耗功能。我们广泛地测试了GPinns,并证明了GPInns在前进和反向PDE问题中的有效性。我们的数值结果表明,GPInn比贴图更好地表现出较少的训练点。此外,我们将GPIn与基于残留的自适应细化(RAR)的方法组合,一种用于在训练期间自适应地改善训练点分布的方法,以进一步提高GPInn的性能,尤其是具有陡峭梯度的溶液的PDE。
translated by 谷歌翻译