Navier-Stokes方程是描述液体和空气等流体运动的重要部分微分方程。由于Navier-Stokes方程的重要性,有效的数值方案的发展对科学和工程师都很重要。最近,随着AI技术的开发,已经设计了几种方法来整合深层神经网络,以模拟和推断不可压缩的Navier-Stokes方程所控制的流体动力学,这些方程可以以无网状和可不同的方式加速模拟或推断过程。在本文中,我们指出,现有的深入Navier-Stokes知情方法的能力仅限于处理非平滑或分数方程,这在现实中是两种关键情况。为此,我们提出了\ emph {深入的随机涡流方法}(drvm),该方法将神经网络与随机涡流动力学系统相结合,等效于Navier-Stokes方程。具体而言,随机涡流动力学激发了用于训练神经网络的基于蒙特卡洛的损失函数,从而避免通过自动差异计算衍生物。因此,DRVM不仅可以有效地求解涉及粗糙路径,非差异初始条件和分数运算符的Navier-Stokes方程,而且还继承了基于深度学习的求解器的无网格和可区分优势。我们对凯奇问题,参数求解器学习以及2-D和3-D不可压缩的Navier-Stokes方程的逆问题进行实验。所提出的方法为Navier-Stokes方程的仿真和推断提供了准确的结果。特别是对于包括奇异初始条件的情况,DRVM明显胜过现有的PINN方法。
translated by 谷歌翻译
Solute transport in porous media is relevant to a wide range of applications in hydrogeology, geothermal energy, underground CO2 storage, and a variety of chemical engineering systems. Due to the complexity of solute transport in heterogeneous porous media, traditional solvers require high resolution meshing and are therefore expensive computationally. This study explores the application of a mesh-free method based on deep learning to accelerate the simulation of solute transport. We employ Physics-informed Neural Networks (PiNN) to solve solute transport problems in homogeneous and heterogeneous porous media governed by the advection-dispersion equation. Unlike traditional neural networks that learn from large training datasets, PiNNs only leverage the strong form mathematical models to simultaneously solve for multiple dependent or independent field variables (e.g., pressure and solute concentration fields). In this study, we construct PiNN using a periodic activation function to better represent the complex physical signals (i.e., pressure) and their derivatives (i.e., velocity). Several case studies are designed with the intention of investigating the proposed PiNN's capability to handle different degrees of complexity. A manual hyperparameter tuning method is used to find the best PiNN architecture for each test case. Point-wise error and mean square error (MSE) measures are employed to assess the performance of PiNNs' predictions against the ground truth solutions obtained analytically or numerically using the finite element method. Our findings show that the predictions of PiNN are in good agreement with the ground truth solutions while reducing computational complexity and cost by, at least, three orders of magnitude.
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
Deep learning has achieved remarkable success in diverse applications; however, its use in solving partial differential equations (PDEs) has emerged only recently. Here, we present an overview of physics-informed neural networks (PINNs), which embed a PDE into the loss of the neural network using automatic differentiation. The PINN algorithm is simple, and it can be applied to different types of PDEs, including integro-differential equations, fractional PDEs, and stochastic PDEs. Moreover, from the implementation point of view, PINNs solve inverse problems as easily as forward problems. We propose a new residual-based adaptive refinement (RAR) method to improve the training efficiency of PINNs. For pedagogical reasons, we compare the PINN algorithm to a standard finite element method. We also present a Python library for PINNs, DeepXDE, which is designed to serve both as an education tool to be used in the classroom as well as a research tool for solving problems in computational science and engineering. Specifically, DeepXDE can solve forward problems given initial and boundary conditions, as well as inverse problems given some extra measurements. DeepXDE supports complex-geometry domains based on the technique of constructive solid geometry, and enables the user code to be compact, resembling closely the mathematical formulation. We introduce the usage of DeepXDE and its customizability, and we also demonstrate the capability of PINNs and the user-friendliness of DeepXDE for five different examples. More broadly, DeepXDE contributes to the more rapid development of the emerging Scientific Machine Learning field.
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
机器学习方法最近在求解部分微分方程(PDE)中的承诺。它们可以分为两种广泛类别:近似解决方案功能并学习解决方案操作员。物理知识的神经网络(PINN)是前者的示例,而傅里叶神经操作员(FNO)是后者的示例。这两种方法都有缺点。 Pinn的优化是具有挑战性,易于发生故障,尤其是在多尺度动态系统上。 FNO不会遭受这种优化问题,因为它在给定的数据集上执行了监督学习,但获取此类数据可能太昂贵或无法使用。在这项工作中,我们提出了物理知识的神经运营商(Pino),在那里我们结合了操作学习和功能优化框架。这种综合方法可以提高PINN和FNO模型的收敛速度和准确性。在操作员学习阶段,Pino在参数PDE系列的多个实例上学习解决方案操作员。在测试时间优化阶段,Pino优化预先训练的操作员ANSATZ,用于PDE的查询实例。实验显示Pino优于许多流行的PDE家族的先前ML方法,同时保留与求解器相比FNO的非凡速度。特别是,Pino准确地解决了挑战的长时间瞬态流量,而其他基线ML方法无法收敛的Kolmogorov流程。
translated by 谷歌翻译
我们制定了一类由物理驱动的深层变量模型(PDDLVM),以学习参数偏微分方程(PDES)的参数到解决方案(正向)和解决方案到参数(逆)图。我们的公式利用有限元方法(FEM),深神经网络和概率建模来组装一个深层概率框架,在该框架中,向前和逆图通过连贯的不确定性量化近似。我们的概率模型明确合并了基于参数PDE的密度和可训练的解决方案到参数网络,而引入的摊销变异家庭假定参数到解决方案网络,所有这些网络均经过联合培训。此外,所提出的方法不需要任何昂贵的PDE解决方案,并且仅在训练时间内对物理信息进行了信息,该方法允许PDE的实时仿真和培训后的逆问题解决方案的产生,绕开了对FEM操作的需求,以相当的准确性,以便于FEM解决方案。提出的框架进一步允许无缝集成观察到的数据,以解决反问题和构建生成模型。我们证明了方法对非线性泊松问题,具有复杂3D几何形状的弹性壳以及整合通用物理信息信息的神经网络(PINN)体系结构的有效性。与传统的FEM求解器相比,训练后,我们最多达到了三个数量级的速度,同时输出连贯的不确定性估计值。
translated by 谷歌翻译
深入学习被证明是通过物理信息的神经网络(PINNS)求解部分微分方程(PDE)的有效工具。 Pinns将PDE残差嵌入到神经网络的损耗功能中,已成功用于解决各种前向和逆PDE问题。然而,第一代Pinns的一个缺点是它们通常具有许多训练点即使具有有限的准确性。在这里,我们提出了一种新的方法,梯度增强的物理信息的神经网络(GPInns),用于提高Pinns的准确性和培训效率。 GPInns利用PDE残差的梯度信息,并将梯度嵌入损耗功能。我们广泛地测试了GPinns,并证明了GPInns在前进和反向PDE问题中的有效性。我们的数值结果表明,GPInn比贴图更好地表现出较少的训练点。此外,我们将GPIn与基于残留的自适应细化(RAR)的方法组合,一种用于在训练期间自适应地改善训练点分布的方法,以进一步提高GPInn的性能,尤其是具有陡峭梯度的溶液的PDE。
translated by 谷歌翻译
We propose characteristic-informed neural networks (CINN), a simple and efficient machine learning approach for solving forward and inverse problems involving hyperbolic PDEs. Like physics-informed neural networks (PINN), CINN is a meshless machine learning solver with universal approximation capabilities. Unlike PINN, which enforces a PDE softly via a multi-part loss function, CINN encodes the characteristics of the PDE in a general-purpose deep neural network trained with the usual MSE data-fitting regression loss and standard deep learning optimization methods. This leads to faster training and can avoid well-known pathologies of gradient descent optimization of multi-part PINN loss functions. If the characteristic ODEs can be solved exactly, which is true in important cases, the output of a CINN is an exact solution of the PDE, even at initialization, preventing the occurrence of non-physical outputs. Otherwise, the ODEs must be solved approximately, but the CINN is still trained only using a data-fitting loss function. The performance of CINN is assessed empirically in forward and inverse linear hyperbolic problems. These preliminary results indicate that CINN is able to improve on the accuracy of the baseline PINN, while being nearly twice as fast to train and avoiding non-physical solutions. Future extensions to hyperbolic PDE systems and nonlinear PDEs are also briefly discussed.
translated by 谷歌翻译
科学和工程学中的一个基本问题是设计最佳的控制政策,这些政策将给定的系统转向预期的结果。这项工作提出了同时求解给定系统状态和最佳控制信号的控制物理信息的神经网络(控制PINNS),在符合基础物理定律的一个阶段框架中。先前的方法使用两个阶段的框架,该框架首先建模然后按顺序控制系统。相比之下,控制PINN将所需的最佳条件纳入其体系结构和损耗函数中。通过解决以下开环的最佳控制问题来证明控制PINN的成功:(i)一个分析问题,(ii)一维热方程,以及(iii)二维捕食者捕食者问题。
translated by 谷歌翻译
深度学习的繁荣激发了渴望整合这两个领域的计算流体动力学的研究人员和实践者。PINN(物理信息神经网络)方法就是这样的尝试。尽管文献中的大多数报告都显示出应用PINN方法的积极结果,但我们对其进行了实验扼杀了这种乐观。这项工作介绍了我们使用PINN解决两个基本流量问题的不成功的故事:2D Taylor-Green Vortex at $ re = 100 $ = 100 $和2D缸流,$ re re = 200 $。 Pinn方法解决了2D Taylor-Green涡流问题,并以可接受的结果为基础,我们将这种流程作为精度和性能基准。 Pinn方法的准确性需要大约32个小时的训练,以使$ 16 \ times 16 $有限差异模拟的准确性不到20秒。另一方面,2D气缸流甚至没有导致物理溶液。 Pinn方法的表现像稳态的求解器,没有捕获涡流脱落现象。通过分享我们的经验,我们要强调的是,Pinn方法仍然是一种正在进行的工作。需要更多的工作来使Pinn对于现实世界中的问题可行。
translated by 谷歌翻译
在科学和工程应用中,通常需要反复解决类似的计算问题。在这种情况下,我们可以利用先前解决的问题实例中的数据来提高查找后续解决方案的效率。这提供了一个独特的机会,可以将机器学习(尤其是元学习)和科学计算相结合。迄今为止,文献中已经提出了各种此类域特异性方法,但是设计这些方法的通用方法仍然不足。在本文中,我们通过制定一个通用框架来描述这些问题,并提出一种基于梯度的算法来以统一的方式解决这些问题。作为这种方法的说明,我们研究了迭代求解器的适应性参数的自适应生成,以加速微分方程的溶液。我们通过理论分析和数值实验来证明我们方法的性能和多功能性,包括应用于不可压缩流量模拟的应用以及参数估计的逆问题。
translated by 谷歌翻译
我们提出了一种基于具有子域(CENN)的神经网络的保守能量方法,其中允许通过径向基函数(RBF),特定解决方案神经网络和通用神经网络构成满足没有边界惩罚的基本边界条件的可允许功能。与具有子域的强形式Pinn相比,接口处的损耗术语具有较低的阶数。所提出的方法的优点是效率更高,更准确,更小的近双达,而不是具有子域的强形式Pinn。所提出的方法的另一个优点是它可以基于可允许功能的特殊结构适用于复杂的几何形状。为了分析其性能,所提出的方法宫殿用于模拟代表性PDE,这些实施例包括强不连续性,奇异性,复杂边界,非线性和异质问题。此外,在处理异质问题时,它优于其他方法。
translated by 谷歌翻译
求解高维局部微分方程是经济学,科学和工程的反复挑战。近年来,已经开发了大量的计算方法,其中大多数依赖于蒙特卡罗采样和基于深度学习的近似的组合。对于椭圆形和抛物线问题,现有方法可以广泛地分类为依赖于$ \ Texit {向后随机微分方程} $(BSDES)和旨在最小化回归$ L ^ 2 $ -Error( $ \ textit {物理信息的神经网络} $,pinns)。在本文中,我们审查了文献,并提出了一种基于新型$ \ Texit的方法{扩散丢失} $,在BSDES和Pinns之间插值。我们的贡献为对高维PDE的数值方法的统一理解开辟了门,以及结合BSDES和PINNS强度的实施方式。我们还向特征值问题提供概括并进行广泛的数值研究,包括计算非线性SCHR \“odinger运营商的地面状态和分子动态相关的委托功能的计算。
translated by 谷歌翻译
在本文中,我们开发了一种物理知识的神经网络(PINN)模型,用于具有急剧干扰初始条件的抛物线问题。作为抛物线问题的一个示例,我们考虑具有点(高斯)源初始条件的对流 - 分散方程(ADE)。在$ d $维的ADE中,在初始条件衰减中的扰动随时间$ t $ as $ t^{ - d/2} $,这可能会在Pinn解决方案中造成较大的近似错误。 ADE溶液中的局部大梯度使该方程的残余效率低下的(PINN)拉丁高立方体采样(常见)。最后,抛物线方程的PINN解对损耗函数中的权重选择敏感。我们提出了一种归一化的ADE形式,其中溶液的初始扰动不会降低幅度,并证明该归一化显着降低了PINN近似误差。我们提出了与通过其他方法选择的权重相比,损耗函数中的权重标准更准确。最后,我们提出了一种自适应采样方案,该方案可显着减少相同数量的采样(残差)点的PINN溶液误差。我们证明了提出的PINN模型的前进,反向和向后ADE的准确性。
translated by 谷歌翻译
物理信息的神经网络(PINN)已证明是解决部分微分方程(PDE)的前进和反问题的有效工具。 PINN将PDE嵌入神经网络的丢失中,并在一组散射的残留点上评估该PDE损失。这些点的分布对于PINN的性能非常重要。但是,在现有的针对PINN的研究中,仅使用了一些简单的残留点抽样方法。在这里,我们介绍了两类采样的全面研究:非自适应均匀抽样和适应性非均匀抽样。我们考虑了六个均匀的采样,包括(1)稳定的均匀网格,(2)均匀随机采样,(3)拉丁语超立方体采样,(4)Halton序列,(5)Hammersley序列和(6)Sobol序列。我们还考虑了用于均匀抽样的重采样策略。为了提高采样效率和PINN的准确性,我们提出了两种新的基于残余的自适应抽样方法:基于残留的自适应分布(RAD)和基于残留的自适应改进,并具有分布(RAR-D),它们会动态地改善基于训练过程中PDE残差的剩余点。因此,我们总共考虑了10种不同的采样方法,包括6种非自适应均匀抽样,重采样的均匀抽样,两种提议的自适应抽样和现有的自适应抽样。我们广泛测试了这些抽样方法在许多设置中的四个正向问题和两个反问题的性能。我们在本研究中介绍的数值结果总结了6000多个PINN的模拟。我们表明,RAD和RAR-D的提议的自适应采样方法显着提高了PINN的准确性,其残留点较少。在这项研究中获得的结果也可以用作选择抽样方法的实用指南。
translated by 谷歌翻译
在本文中,我们提出了用于求解非线性微分方程(NDE)的神经网络的物理知情训练(PIAT)。众所周知,神经网络的标准培训会导致非平滑函数。对抗训练(AT)是针对对抗攻击的既定防御机制,这也可能有助于使解决方案平滑。 AT包括通过扰动增强训练迷你批量,使网络输出不匹配所需的输出对手。与正式AT仅依靠培训数据不同,在这里,我们使用对抗网络体系结构中的自动差异来以非线性微分方程的形式编码管理物理定律。我们将PIAT与PIAT进行了比较,以指示我们方法在求解多达10个维度方面的有效性。此外,我们提出了重量衰减和高斯平滑,以证明PIAT的优势。代码存储库可从https://github.com/rohban-lab/piat获得。
translated by 谷歌翻译
We propose, Monte Carlo Nonlocal physics-informed neural networks (MC-Nonlocal-PINNs), which is a generalization of MC-fPINNs in \cite{guo2022monte}, for solving general nonlocal models such as integral equations and nonlocal PDEs. Similar as in MC-fPINNs, our MC-Nonlocal-PINNs handle the nonlocal operators in a Monte Carlo way, resulting in a very stable approach for high dimensional problems. We present a variety of test problems, including high dimensional Volterra type integral equations, hypersingular integral equations and nonlocal PDEs, to demonstrate the effectiveness of our approach.
translated by 谷歌翻译
近年来,深入学习技术已被用来解决部分微分方程(PDE),其中物理信息的神经网络(PINNS)出现是解决前向和反向PDE问题的有希望的方法。具有点源的PDE,其表示为管理方程中的DIRAC DELTA函数是许多物理过程的数学模型。然而,由于DIRAC DELTA功能所带来的奇点,它们不能直接通过传统的PINNS方法来解决。我们提出了一种普遍的解决方案,以用三种新颖的技术解决这个问题。首先,DIRAC DELTA功能被建模为连续概率密度函数以消除奇点;其次,提出了下限约束的不确定性加权算法,以平衡点源区和其他区域之间的Pinns损失;第三,使用具有周期性激活功能的多尺度深度神经网络来提高PinnS方法的准确性和收敛速度。我们评估了三种代表性PDE的提出方法,实验结果表明,我们的方法优于基于深度学习的方法,涉及准确性,效率和多功能性。
translated by 谷歌翻译
在本文中,我们提出了一种求解高维椭圆局部微分方程(PDE)的半群方法和基于神经网络的相关特征值问题。对于PDE问题,我们在半群运营商的帮助下将原始方程式重构为变分问题,然后解决神经网络(NN)参数化的变分问题。主要优点是在随机梯度下降训练期间不需要混合的二阶衍生计算,并且由半群运算符自动考虑边界条件。与Pinn \ Cite {Raissi2019physics}和DeepRitz \ Cite {Weinan2018Deep}不同的流行方法,其中仅通过惩罚功能强制执行,因此改变了真实解决方案,所提出的方法能够解决没有惩罚功能的边界条件它即使添加了惩罚功能,它也会给出正确的真实解决方案,感谢semigoup运算符。对于特征值问题,提出了一种原始方法,有效地解析了简单的标量双变量的约束,并与BSDE求解器\ Cite {Han202020Solving}相比,诸如与线性相关的特征值问题之类的问题相比,算法更快地算法SCHR \“Odinger操作员。提供了数值结果以证明所提出的方法的性能。
translated by 谷歌翻译