近年来,深入学习技术已被用来解决部分微分方程(PDE),其中物理信息的神经网络(PINNS)出现是解决前向和反向PDE问题的有希望的方法。具有点源的PDE,其表示为管理方程中的DIRAC DELTA函数是许多物理过程的数学模型。然而,由于DIRAC DELTA功能所带来的奇点,它们不能直接通过传统的PINNS方法来解决。我们提出了一种普遍的解决方案,以用三种新颖的技术解决这个问题。首先,DIRAC DELTA功能被建模为连续概率密度函数以消除奇点;其次,提出了下限约束的不确定性加权算法,以平衡点源区和其他区域之间的Pinns损失;第三,使用具有周期性激活功能的多尺度深度神经网络来提高PinnS方法的准确性和收敛速度。我们评估了三种代表性PDE的提出方法,实验结果表明,我们的方法优于基于深度学习的方法,涉及准确性,效率和多功能性。
translated by 谷歌翻译
部分微分方程(PDES)在科学和工程的许多学科中都是普遍的,难以解决。通常,PDE的闭合形式溶液不可用,数值近似方法是计算昂贵的。 PDE的参数在许多应用中是可变的,例如逆问题,控制和优化,风险评估和不确定性量化。在这些应用程序中,我们的目标是解决参数PDE而不是其中一个实例。我们所提出的方法,称为元 - 自动解码器(MAD),将参数PDES作为元学习问题求解,并利用\ Cite {Park2019DeepsDF}中的自动解码器结构来处理不同的任务/ PDE。从PDE管理方程和边界条件诱导的物理知识损失被用作不同任务的培训损失。疯狂的目标是学习一个良好的模型初始化,可以概括不同的任务,最终使未能学习的任务能够更快地学习。疯狂的灵感来自于(猜想)参数PDE解决方案的低维结构,并从流形学习的角度解释了我们的方法。最后,我们展示了疯狂的力量,虽然广泛的数值研究,包括汉堡等式,拉普尔斯方程和时域麦克斯韦方程。与其他深度学习方法相比,MAD表现出更快的收敛速度而不会失去准确性。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
Solute transport in porous media is relevant to a wide range of applications in hydrogeology, geothermal energy, underground CO2 storage, and a variety of chemical engineering systems. Due to the complexity of solute transport in heterogeneous porous media, traditional solvers require high resolution meshing and are therefore expensive computationally. This study explores the application of a mesh-free method based on deep learning to accelerate the simulation of solute transport. We employ Physics-informed Neural Networks (PiNN) to solve solute transport problems in homogeneous and heterogeneous porous media governed by the advection-dispersion equation. Unlike traditional neural networks that learn from large training datasets, PiNNs only leverage the strong form mathematical models to simultaneously solve for multiple dependent or independent field variables (e.g., pressure and solute concentration fields). In this study, we construct PiNN using a periodic activation function to better represent the complex physical signals (i.e., pressure) and their derivatives (i.e., velocity). Several case studies are designed with the intention of investigating the proposed PiNN's capability to handle different degrees of complexity. A manual hyperparameter tuning method is used to find the best PiNN architecture for each test case. Point-wise error and mean square error (MSE) measures are employed to assess the performance of PiNNs' predictions against the ground truth solutions obtained analytically or numerically using the finite element method. Our findings show that the predictions of PiNN are in good agreement with the ground truth solutions while reducing computational complexity and cost by, at least, three orders of magnitude.
translated by 谷歌翻译
物理知识的神经网络(PINNS)由于能力将物理定律纳入模型,在工程的各个领域都引起了很多关注。但是,对机械和热场之间涉及耦合的工业应用中PINN的评估仍然是一个活跃的研究主题。在这项工作中,我们提出了PINNS在非牛顿流体热机械问题上的应用,该问题通常在橡胶日历过程中考虑。我们证明了PINN在处理逆问题和不良问题时的有效性,这些问题是不切实际的,可以通过经典的数值离散方法解决。我们研究了传感器放置的影响以及无监督点对PINNS性能的分布,即从某些部分数据中推断出隐藏的物理领域的问题。我们还研究了PINN从传感器捕获的测量值中识别未知物理参数的能力。在整个工作中,还考虑了嘈杂测量的效果。本文的结果表明,在识别问题中,PINN可以仅使用传感器上的测量结果成功估算未知参数。在未完全定义边界条件的不足问题中,即使传感器的放置和无监督点的分布对PINNS性能产生了很大的影响,我们表明该算法能够从局部测量中推断出隐藏的物理。
translated by 谷歌翻译
部分微分方程通常用于模拟各种物理现象,例如热扩散,波传播,流体动力学,弹性,电动力学和图像处理,并且已经开发了许多分析方法或传统的数值方法并广泛用于其溶液。受深度学习对科学和工程研究的迅速影响的启发,在本文中,我们提出了一个新型的神经网络GF-NET,以无监督的方式学习绿色的线性反应扩散方程的功能。所提出的方法克服了通过使用物理信息的方法和绿色功能的对称性来查找任意域上方程函数的挑战。结果,它尤其导致了在不同边界条件和来源下解决目标方程的有效方法。我们还通过正方形,环形和L形域中的实验证明了所提出的方法的有效性。
translated by 谷歌翻译
Physics-informed neural networks (PINNs) have lately received significant attention as a representative deep learning-based technique for solving partial differential equations (PDEs). Most fully connected network-based PINNs use automatic differentiation to construct loss functions that suffer from slow convergence and difficult boundary enforcement. In addition, although convolutional neural network (CNN)-based PINNs can significantly improve training efficiency, CNNs have difficulty in dealing with irregular geometries with unstructured meshes. Therefore, we propose a novel framework based on graph neural networks (GNNs) and radial basis function finite difference (RBF-FD). We introduce GNNs into physics-informed learning to better handle irregular domains with unstructured meshes. RBF-FD is used to construct a high-precision difference format of the differential equations to guide model training. Finally, we perform numerical experiments on Poisson and wave equations on irregular domains. We illustrate the generalizability, accuracy, and efficiency of the proposed algorithms on different PDE parameters, numbers of collection points, and several types of RBFs.
translated by 谷歌翻译
随着计算能力的增加和机器学习的进步,基于数据驱动的学习方法在解决PDE方面引起了极大的关注。物理知识的神经网络(PINN)最近出现并成功地在各种前进和逆PDES问题中取得了成功,其优异的特性,例如灵活性,无网格解决方案和无监督的培训。但是,它们的收敛速度较慢和相对不准确的解决方案通常会限制其在许多科学和工程领域中的更广泛适用性。本文提出了一种新型的数据驱动的PDES求解器,物理知识的细胞表示(Pixel),优雅地结合了经典数值方法和基于学习的方法。我们采用来自数值方法的网格结构,以提高准确性和收敛速度并克服PINN中呈现的光谱偏差。此外,所提出的方法在PINN中具有相同的好处,例如,使用相同的优化框架来解决前进和逆PDE问题,并很容易通过现代自动分化技术强制执行PDE约束。我们为原始Pinn所努力的各种具有挑战性的PDE提供了实验结果,并表明像素达到了快速收敛速度和高精度。
translated by 谷歌翻译
Deep learning has achieved remarkable success in diverse applications; however, its use in solving partial differential equations (PDEs) has emerged only recently. Here, we present an overview of physics-informed neural networks (PINNs), which embed a PDE into the loss of the neural network using automatic differentiation. The PINN algorithm is simple, and it can be applied to different types of PDEs, including integro-differential equations, fractional PDEs, and stochastic PDEs. Moreover, from the implementation point of view, PINNs solve inverse problems as easily as forward problems. We propose a new residual-based adaptive refinement (RAR) method to improve the training efficiency of PINNs. For pedagogical reasons, we compare the PINN algorithm to a standard finite element method. We also present a Python library for PINNs, DeepXDE, which is designed to serve both as an education tool to be used in the classroom as well as a research tool for solving problems in computational science and engineering. Specifically, DeepXDE can solve forward problems given initial and boundary conditions, as well as inverse problems given some extra measurements. DeepXDE supports complex-geometry domains based on the technique of constructive solid geometry, and enables the user code to be compact, resembling closely the mathematical formulation. We introduce the usage of DeepXDE and its customizability, and we also demonstrate the capability of PINNs and the user-friendliness of DeepXDE for five different examples. More broadly, DeepXDE contributes to the more rapid development of the emerging Scientific Machine Learning field.
translated by 谷歌翻译
事实证明,神经操作员是无限维函数空间之间非线性算子的强大近似值,在加速偏微分方程(PDE)的溶液方面是有希望的。但是,它需要大量的模拟数据,这些数据可能成本高昂,从而导致鸡肉 - 蛋的困境并限制其在求解PDE中的使用。为了摆脱困境,我们提出了一个无数据的范式,其中神经网络直接从由离散的PDE构成的平方平方残留(MSR)损失中学习物理。我们研究了MSR损失中的物理信息,并确定神经网络必须具有对PDE空间域中的远距离纠缠建模的挑战,PDE的空间域中的模式在不同的PDE中有所不同。因此,我们提出了低级分解网络(Lordnet),该网络可调节,并且也有效地建模各种纠缠。具体而言,Lordnet通过简单的完全连接的层学习了与全球纠缠的低级别近似值,从而以降低的计算成本来提取主要模式。关于解决泊松方程和纳维尔 - 长方式方程的实验表明,MSR损失的物理约束可以提高神经网络的精确度和泛化能力。此外,Lordnet在PDE中的其他现代神经网络体系结构都优于最少的参数和最快的推理速度。对于Navier-Stokes方程式,学习的运算符的速度比具有相同计算资源的有限差异解决方案快50倍。
translated by 谷歌翻译
物理信息的神经网络(PINN)已证明是解决部分微分方程(PDE)的前进和反问题的有效工具。 PINN将PDE嵌入神经网络的丢失中,并在一组散射的残留点上评估该PDE损失。这些点的分布对于PINN的性能非常重要。但是,在现有的针对PINN的研究中,仅使用了一些简单的残留点抽样方法。在这里,我们介绍了两类采样的全面研究:非自适应均匀抽样和适应性非均匀抽样。我们考虑了六个均匀的采样,包括(1)稳定的均匀网格,(2)均匀随机采样,(3)拉丁语超立方体采样,(4)Halton序列,(5)Hammersley序列和(6)Sobol序列。我们还考虑了用于均匀抽样的重采样策略。为了提高采样效率和PINN的准确性,我们提出了两种新的基于残余的自适应抽样方法:基于残留的自适应分布(RAD)和基于残留的自适应改进,并具有分布(RAR-D),它们会动态地改善基于训练过程中PDE残差的剩余点。因此,我们总共考虑了10种不同的采样方法,包括6种非自适应均匀抽样,重采样的均匀抽样,两种提议的自适应抽样和现有的自适应抽样。我们广泛测试了这些抽样方法在许多设置中的四个正向问题和两个反问题的性能。我们在本研究中介绍的数值结果总结了6000多个PINN的模拟。我们表明,RAD和RAR-D的提议的自适应采样方法显着提高了PINN的准确性,其残留点较少。在这项研究中获得的结果也可以用作选择抽样方法的实用指南。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
我们提出了一种使用一组我们称为神经基函数(NBF)的神经网络来求解部分微分方程(PDE)的方法。这个NBF框架是POD DeepOnet操作方法的一种新颖的变化,我们将一组神经网络回归到降低的阶正合成分解(POD)基础上。然后将这些网络与分支网络结合使用,该分支网络摄入规定的PDE的参数以计算降低的订单近似值。该方法适用于高速流条件的稳态EULER方程(Mach 10-30),在该方程式中,我们考虑了围绕圆柱体的2D流,从而形成了冲击条件。然后,我们将NBF预测用作高保真计算流体动力学(CFD)求解器(CFD ++)的初始条件,以显示更快的收敛性。还将介绍用于培训和实施该算法的经验教训。
translated by 谷歌翻译
标准的神经网络可以近似一般的非线性操作员,要么通过数学运算符的组合(例如,在对流 - 扩散反应部分微分方程中)的组合,要么仅仅是黑匣子,例如黑匣子,例如一个系统系统。第一个神经操作员是基于严格的近似理论于2019年提出的深层操作员网络(DeepOnet)。从那时起,已经发布了其他一些较少的一般操作员,例如,基于图神经网络或傅立叶变换。对于黑匣子系统,对神经操作员的培训仅是数据驱动的,但是如果知道管理方程式可以在培训期间将其纳入损失功能,以开发物理知识的神经操作员。神经操作员可以用作设计问题,不确定性量化,自主系统以及几乎任何需要实时推断的应用程序中的代替代物。此外,通过将它们与相对轻的训练耦合,可以将独立的预训练deponets用作复杂多物理系统的组成部分。在这里,我们介绍了Deponet,傅立叶神经操作员和图神经操作员的评论,以及适当的扩展功能扩展,并突出显示它们在计算机械师中的各种应用中的实用性,包括多孔媒体,流体力学和固体机制, 。
translated by 谷歌翻译
We present an end-to-end framework to learn partial differential equations that brings together initial data production, selection of boundary conditions, and the use of physics-informed neural operators to solve partial differential equations that are ubiquitous in the study and modeling of physics phenomena. We first demonstrate that our methods reproduce the accuracy and performance of other neural operators published elsewhere in the literature to learn the 1D wave equation and the 1D Burgers equation. Thereafter, we apply our physics-informed neural operators to learn new types of equations, including the 2D Burgers equation in the scalar, inviscid and vector types. Finally, we show that our approach is also applicable to learn the physics of the 2D linear and nonlinear shallow water equations, which involve three coupled partial differential equations. We release our artificial intelligence surrogates and scientific software to produce initial data and boundary conditions to study a broad range of physically motivated scenarios. We provide the source code, an interactive website to visualize the predictions of our physics informed neural operators, and a tutorial for their use at the Data and Learning Hub for Science.
translated by 谷歌翻译
基于神经网络的求解部分微分方程的方法由于其简单性和灵活性来表示偏微分方程的解决方案而引起了相当大的关注。在训练神经网络时,网络倾向于学习与低频分量相对应的全局特征,而高频分量以较慢的速率(F原理)近似。对于解决方案包含广泛尺度的一类等式,由于无法捕获高频分量,网络训练过程可能会遭受缓慢的收敛性和低精度。在这项工作中,我们提出了一种分层方法来提高神经网络解决方案的收敛速率和准确性。所提出的方法包括多训练水平,其中引导新引入的神经网络来学习先前级别近似的残余。通过神经网络训练过程的性​​质,高级校正倾向于捕获高频分量。我们通过一套线性和非线性部分微分方程验证所提出的分层方法的效率和稳健性。
translated by 谷歌翻译
虽然深入学习算法在科学计算中表现出巨大的潜力,但其对多种问题的应用仍然是一个很大的挑战。这表明了神经网络倾向于首先学习低频分量的“频率原理”。提出了多种深度神经网络(MSCALEDNN)等新颖架构,以在一定程度上缓解此问题。在本文中,我们通过组合传统的数值分析思路和MscaledNN算法来构建基于子空间分解的DNN(被称为SD $ ^ 2 $ NN)架构。所提出的架构包括一个低频正常DNN子模块,以及一个(或几个)高频Mscalednn子模块,其旨在分别捕获多尺度解决方案的平滑部分和振荡部分。此外,在SD $ ^ 2 $ NN模型中包含了一种新的三角激活函数。我们通过常规或不规则几何域中的几个基准多尺度问题展示SD $ ^ 2 $ NN架构的性能。数值结果表明,SD $ ^ 2 $ NN模型优于现有的现有型号,如MSCALEDNN。
translated by 谷歌翻译
Navier-Stokes方程是描述液体和空气等流体运动的重要部分微分方程。由于Navier-Stokes方程的重要性,有效的数值方案的发展对科学和工程师都很重要。最近,随着AI技术的开发,已经设计了几种方法来整合深层神经网络,以模拟和推断不可压缩的Navier-Stokes方程所控制的流体动力学,这些方程可以以无网状和可不同的方式加速模拟或推断过程。在本文中,我们指出,现有的深入Navier-Stokes知情方法的能力仅限于处理非平滑或分数方程,这在现实中是两种关键情况。为此,我们提出了\ emph {深入的随机涡流方法}(drvm),该方法将神经网络与随机涡流动力学系统相结合,等效于Navier-Stokes方程。具体而言,随机涡流动力学激发了用于训练神经网络的基于蒙特卡洛的损失函数,从而避免通过自动差异计算衍生物。因此,DRVM不仅可以有效地求解涉及粗糙路径,非差异初始条件和分数运算符的Navier-Stokes方程,而且还继承了基于深度学习的求解器的无网格和可区分优势。我们对凯奇问题,参数求解器学习以及2-D和3-D不可压缩的Navier-Stokes方程的逆问题进行实验。所提出的方法为Navier-Stokes方程的仿真和推断提供了准确的结果。特别是对于包括奇异初始条件的情况,DRVM明显胜过现有的PINN方法。
translated by 谷歌翻译
Despite great progress in simulating multiphysics problems using the numerical discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate noisy data into existing algorithms, mesh generation remains complex, and high-dimensional problems governed by parameterized PDEs cannot be tackled. Moreover, solving inverse problems with hidden physics is often prohibitively expensive and requires different formulations and elaborate computer codes. Machine learning has emerged as a promising alternative, but training deep neural networks requires big data, not always available for scientific problems. Instead, such networks can be trained from additional information obtained by enforcing the physical laws (for example, at random points in the continuous space-time domain). Such physics-informed learning integrates (noisy) data and mathematical models, and implements them through neural networks or other kernel-based regression networks. Moreover, it may be possible to design specialized network architectures that automatically satisfy some of the physical invariants for better accuracy, faster training and improved generalization. Here, we review some of the prevailing trends in embedding physics into machine learning, present some of the current capabilities and limitations and discuss diverse applications of physics-informed learning both for forward and inverse problems, including discovering hidden physics and tackling high-dimensional problems.
translated by 谷歌翻译
我们制定了一类由物理驱动的深层变量模型(PDDLVM),以学习参数偏微分方程(PDES)的参数到解决方案(正向)和解决方案到参数(逆)图。我们的公式利用有限元方法(FEM),深神经网络和概率建模来组装一个深层概率框架,在该框架中,向前和逆图通过连贯的不确定性量化近似。我们的概率模型明确合并了基于参数PDE的密度和可训练的解决方案到参数网络,而引入的摊销变异家庭假定参数到解决方案网络,所有这些网络均经过联合培训。此外,所提出的方法不需要任何昂贵的PDE解决方案,并且仅在训练时间内对物理信息进行了信息,该方法允许PDE的实时仿真和培训后的逆问题解决方案的产生,绕开了对FEM操作的需求,以相当的准确性,以便于FEM解决方案。提出的框架进一步允许无缝集成观察到的数据,以解决反问题和构建生成模型。我们证明了方法对非线性泊松问题,具有复杂3D几何形状的弹性壳以及整合通用物理信息信息的神经网络(PINN)体系结构的有效性。与传统的FEM求解器相比,训练后,我们最多达到了三个数量级的速度,同时输出连贯的不确定性估计值。
translated by 谷歌翻译